An Extended Simultaneous Algebraic Reconstruction Technique for Imaging the Ionosphere Using GNSS Data and Its Preliminary Results
Abstract
:1. Introduction
2. SART and ESART Methods
2.1. Simultaneous Algebraic Reconstruction Technique (SART)
2.2. Extended SART (ESART) Method
3. Data and Experiments
3.1. Data Sources and Preprocessing Strategy
3.2. Outline of the Experiment
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Austen, J.R.; Franke, S.J.; Liu, C.H. Ionospheric imaging using computerized tomography. Radio Sci. 1988, 23, 299–307. [Google Scholar] [CrossRef]
- Bust, G.S.; Mitchell, C.N. History, current state, and future directions of ionospheric imaging. Rev. Geophys. 2008, 46, 1–23. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Colombo, O.L. Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400–1000 km and with high geomagnetic activity. Geophys. Res. Lett. 2000, 27, 2009–2012. [Google Scholar] [CrossRef] [Green Version]
- Allain, D.J.; Mitchell, C.N. Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping. GPS Solut. 2009, 13, 141–151. [Google Scholar] [CrossRef]
- Kong, J.; Lulu, S.; Zhou, C.; Yao, Y.; An, J.; Wang, Z. An Improved Computerized Ionospheric Tomography Model Fusing 3-D Multisource Ionospheric Data Enabled Quantifying the Evolution of Magnetic Storm. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3725–3736. [Google Scholar] [CrossRef]
- Mei, D.; Ren, X.; Liu, H.; Le, X.; Xiong, S.; Zhang, X. Global Three-Dimensional Ionospheric Tomography by Combination of Ground-Based and Space-Borne GNSS Data. Space Weather 2023, 21, e2022SW003368. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Skone, S.; Gao, Y. Assessment of ionosphere tomographic modeling performance using GPS data during the October 2003 geomagnetic storm event. Radio Sci. 2006, 41, RS1007. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Aragón-Àngel, À.; García-Rigo, A.; Salazar, D.; Escudero, M. The ionosphere: Effects, GPS modeling and the benefits for space geodetic techniques. J. Geod. 2011, 85, 887–907. [Google Scholar] [CrossRef]
- Schunk, R.W.; Scherliess, L.; Sojka, J.J. Recent approaches to modeling ionospheric weather. Adv. Space Res. 2003, 31, 819–828. [Google Scholar] [CrossRef]
- Wen, D.; Yuan, Y.; Ou, J.; Zhang, K. Ionospheric Response to the Geomagnetic Storm on 21 August 2003 Over China Using GNSS-Based Tomographic Technique. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3212–3217. [Google Scholar] [CrossRef]
- Muella, M.; de Paula, E.; Mitchell, C.; Kintner, P.; Paes, R.; Batista, I. Tomographic imaging of the equatorial and low-latitude ionosphere over central-eastern Brazil. Earth Planets Space 2011, 63, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhai, C.; Kong, J.; Zhao, Q.; Zhao, C. A modified three-dimensional ionospheric tomography algorithm with side rays. GPS Solut. 2018, 22, 107. [Google Scholar] [CrossRef]
- Jin, S.; Li, D. 3-D ionospheric tomography from dense GNSS observations based on an improved two-step iterative algorithm. Adv. Space Res. 2018, 62, 809–820. [Google Scholar] [CrossRef]
- Prol, F.; Camargo, P. Review of tomographic reconstruction methods of the ionosphere using GNSS. Rev. Bras. Geofísica 2015, 33, 445. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Mei, D.; Zhang, X.; Freeshah, M.; Xiong, S. Electron Density Reconstruction by Ionospheric Tomography From the Combination of GNSS and Upcoming LEO Constellations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029074. [Google Scholar] [CrossRef]
- Yin, P.; Mitchell, C.N.; Spencer, P.S.J.; Foster, J.C. Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Huo, X.; Yuan, Y.; Ou, J.; Li, Y.; Li, Z.; Wang, N. A new ionospheric tomographic algorithm taking into account the variation of the ionosphere. Chin. J. Geophys. 2016, 59, 2393–2401. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Y.; Dai, Y.; Zhu, H.; Huang, Y.; Wu, L.; Sun, Y. Dual Empirical Orthogonal Functions Restrained Tomographic Model for Ionosphere Imaging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4110512. [Google Scholar] [CrossRef]
- Lu, W.; Ma, G.; Wan, Q. A Review of Voxel-Based Computerized Ionospheric Tomography with GNSS Ground Receivers. Remote Sens. 2021, 13, 3432. [Google Scholar] [CrossRef]
- Prol, F.; Pajares, M.; Muella, M.; Camargo, P. Tomographic Imaging of Ionospheric Plasma Bubbles Based on GNSS and Radio Occultation Measurements. Remote Sens. 2018, 10, 1529. [Google Scholar] [CrossRef] [Green Version]
- Prol, F.; Kodikara, T.; Hoque, M.; Borries, C. Global-Scale Ionospheric Tomography During the 17 March 2015 Geomagnetic Storm. Space Weather 2021, 19, e2021SW002889. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, Y.; Zhou, Y.; Gao, S.; Zhou, C.; Tang, Q.; Liu, Y. Ionospheric response to the 17 March and 22 June 2015 geomagnetic storms over Wuhan region using GNSS-based tomographic technique. Adv. Space Res. 2020, 67, 111–121. [Google Scholar] [CrossRef]
- Nesterov, I.; Kunitsyn, V. GNSS radio tomography of the ionosphere: The problem with essentially incomplete data. Adv. Space Res. 2011, 47, 1789–1803. [Google Scholar] [CrossRef]
- Raymond, T.D.; Franke, S.J.; Yeh, K.C. Ionospheric tomography: Its limitations and reconstruction methods. J. Atmos. Sol. Terr. Phys. 1994, 56, 637–657. [Google Scholar] [CrossRef]
- Wen, D.; Yuan, Y.; Ou, J.; Zhang, K.; Liu, K. A Hybrid Reconstruction Algorithm for 3-D Ionospheric Tomography. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1733–1739. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Tang, J.; Kong, J.; Liang, Z.; Zhang, S. Application of hybrid regularization method for tomographic reconstruction of midlatitude ionospheric electron density. Adv. Space Res. 2013, 52, 2215–2225. [Google Scholar] [CrossRef]
- Zhou, C.; Fremouw, E.J.; Sahr, J.D. Optimal truncation criterion for application of singular value decomposition to ionospheric tomography. Radio Sci. 1999, 34, 155–166. [Google Scholar] [CrossRef]
- Bhuyan, K.; Singh, S.; Bhuyan, P. Tomographic reconstruction of the ionosphere using generalized singular value decomposition. Curr. Sci. 2002, 83, 1117–1120. [Google Scholar]
- Erturk, O.; Arikan, O.; Arikan, F. Tomographic reconstruction of the ionospheric electron density as a function of space and time. Adv. Space Res. 2009, 43, 1702–1710. [Google Scholar] [CrossRef]
- Hong, J.; Kim, Y.; Chung, J.-K.; Ssessanga, N.; Kwak, Y.-S. Tomography Reconstruction of Ionospheric Electron Density with Empirical Orthonormal Functions Using Korea GNSS Network. J. Astron. Space Sci. 2017, 34, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Norberg, J.; Virtanen, I.; Roininen, L.; Vierinen, J.; Orispää, M.; Kauristie, K.; Lehtinen, M. Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements. Atmos. Meas. Tech. 2016, 9, 1859–1869. [Google Scholar] [CrossRef] [Green Version]
- Norberg, J.; Vierinen, J.; Roininen, L.; Orispää, M.; Kauristie, K.; Rideout, W.; Coster, A.; Lehtinen, M. Gaussian Markov Random Field Priors in Ionospheric 3-D Multi-Instrument Tomography. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7009–7021. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Tang, Q.; Zhou, C.; Zhao, Z.; Wei, F. Three-dimensional ionospheric tomography based on compressed sensing. GPS Solut. 2023, 27, 90. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Erickson, P.J.; Wang, W.; Coster, A.J.; Rideout, W. 3-D Regional Ionosphere Imaging and SED Reconstruction With a New TEC-Based Ionospheric Data Assimilation System (TIDAS). Space Weather 2022, 20, e2022SW003055. [Google Scholar] [CrossRef]
- Norberg, J.; Roininen, L.; Vierinen, J.; Amm, O.; McKay-Bukowski, D.; Lehtinen, M. Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors. Radio Sci. 2015, 50, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Norberg, J.; Kaki, S.; Roininen, L.; Mielich, J.; Virtanen, I.I. Model-Free Approach for Regional Ionospheric Multi-Instrument Imaging. J. Geophys. Res. Space Phys. 2023, 128, e2022JA030794. [Google Scholar] [CrossRef]
- Raymund, T.D.; Austen, J.R.; Franke, S.J.; Liu, C.H.; Klobuchar, J.A.; Stalker, J.R. Application of computerized tomography to the investigation of ionospheric structures. Radio Sci. 1990, 25, 771–789. [Google Scholar] [CrossRef]
- Das, S.; Shukla, A. Two-dimensional Ionospheric Tomography over the Low Latitude Indian Region: An Inter-comparison of ART and MART Algorithms. Radio Sci. 2011, 46, 1–13. [Google Scholar] [CrossRef]
- Pryse, S.E.; Kersley, L. A preliminary experimental test of ionospheric tomography. J. Atmos. Terr. Phys. 1992, 54, 1007–1012. [Google Scholar] [CrossRef]
- Yao, Y.; Zhai, C.; Kong, J.; Zhao, C.; Luo, Y.; Liu, L. An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography. GPS Solut. 2020, 24, 68. [Google Scholar] [CrossRef]
- Nandi, S.; Bandyopadhyay, B. Study of low-latitude ionosphere over Indian region using simultaneous algebraic reconstruction technique. Adv. Space Res. 2014, 55, 545–553. [Google Scholar] [CrossRef]
- Mitchell, C.; Kersley, L.; Heaton, J.; Pryse, S. Determination of the vertical electron-density profile in ionospheric tomography: Experimental results. Ann. Geophys. 1997, 15, 747–752. [Google Scholar] [CrossRef]
- Pryse, S.E.; Kersley, L.; Mitchell, C.N.; Spencer, P.S.J.; Williams, M.J. A comparison of reconstruction techniques used in ionospheric tomography. Radio Sci. 1998, 33, 1767–1779. [Google Scholar] [CrossRef]
- Wen, D.; Yuan, Y.; Ou, J.; Huo, X.; Zhang, K. Three-dimensional ionospheric tomography by an improved algebraic reconstruction technique. GPS Solut. 2007, 11, 251–258. [Google Scholar] [CrossRef]
- Zheng, D.; Wusheng, H.; Nie, W. Multiscale ionospheric tomography. GPS Solut. 2014, 19, 579–588. [Google Scholar] [CrossRef]
- Saito, S.; Suzuki, S.; Yamamoto, M.; Chen, C.-H.; Saito, A. Real-Time Ionosphere Monitoring by Three-Dimensional Tomography over Japan. Navigation 2017, 64, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Li, P.; He, J.; Hu, W.; Li, C. Research on ionospheric tomography based on variable pixel height. Adv. Space Res. 2016, 57, 1847–1858. [Google Scholar] [CrossRef]
- Hobiger, T.; Kondo, T.; Koyama, Y. Constrained Simultaneous Algebraic Reconstruction Technique (C-SART)—A new and simple algorithm applied to ionospheric tomography. Earth Planets Space 2008, 60, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Liu, S.; Tang, P. Tomographic reconstruction of ionospheric electron density based on constrained algebraic reconstruction technique. GPS Solut. 2010, 14, 375–380. [Google Scholar] [CrossRef]
- Wen, D.; Wang, Y.; Norman, R. A new two-step algorithm for ionospheric tomography solution. GPS Solut. 2012, 16, 89–94. [Google Scholar] [CrossRef]
- Zheng, D.; Yao, Y.; Nie, W.; Yang, W.; Wusheng, H.; Minsi, A.; Hongwei, Z. An Improved Iterative Algorithm for Ionospheric Tomography Reconstruction by Using the Automatic Search Technology of Relaxation Factor. Radio Sci. 2018, 53, 1051–1066. [Google Scholar] [CrossRef] [Green Version]
- Stolle, C. Three-Dimensional Imaging of Ionospheric Electron Density Fields Using GPS Observations at the Ground and Onboard the CHAMP Satellite. Ph.D. Thesis, Universität Leipzig, Institut für Meteorologie, Leipzig, Germany, 2005. [Google Scholar]
- Andersen, A.; Kak, A.C. Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the ART Algorithm. Ultrason. Imaging 1984, 6, 81–94. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, G. Convergence of the Simultaneous Algebraic Reconstruction Technique (SART). IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2003, 12, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yuan, Y.; Li, H.; Ou, J.; Huo, X. Two-Step Method for the Determination of the Differential Code Biases of COMPASS Satellites. J. Geod. 2012, 86, 1059–1076. [Google Scholar] [CrossRef]
- Watermann, J.; Bust, G.; Thayer, J.; Neubert, T.; Coker, C. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations. Ann. Geophys. 2009, 45, 177–189. [Google Scholar] [CrossRef]
- Polekh, N.; Zolotukhina, N.; Kurkin, V.I.; Zherebtsov, G.; Shi, J.; Wang, G.; Wang, Z. Dynamics of ionospheric disturbances during the 17-19 March 2015 geomagnetic storm over East Asia. Adv. Space Res. 2017, 60, 2464–2476. [Google Scholar] [CrossRef]
- Sun, W.J.; Ning, B.Q.; Zhao, B.Q.; Li, G.; Hu, L.; Chang, S.M. Analysis of ionospheric features in middle and low latitude region of China during the geomagnetic storm in March 2015. Chin. J. Geophys. 2017, 60, 1–10. [Google Scholar]
- Liu, L.; Wan, W.; Ning, B. A study of the ionogram derived effective scale height around the ionospheric hmF2. Ann. Geophys. 2006, 24, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Reinisch, B.W. Vertical electron content from ionograms in real time. Radio Sci. 2001, 36, 335–342. [Google Scholar] [CrossRef] [Green Version]
Day | RMES | ΔE | ||||
---|---|---|---|---|---|---|
ESART | SART | IRI-2016 | ESART | SART | IRI-2016 | |
10/01/2019 | 0.248 | 0.263 | 0.257 | 0.183 | 0.216 | 0.181 |
11/01/2019 | 0.237 | 0.276 | 0.254 | 0.175 | 0.234 | 0.169 |
12/01/2019 | 0.206 | 0.309 | 0.282 | 0.162 | 0.248 | 0.204 |
Ave | 0.230 | 0.283 | 0.264 | 0.173 | 0.233 | 0.185 |
Day | RMES | ΔE | ||||
---|---|---|---|---|---|---|
ESART | SART | IRI-2016 | ESART | SART | IRI-2016 | |
10/01/2019 | 0.207 | 0.428 | 0.442 | 0.161 | 0.373 | 0.358 |
11/01/2019 | 0.233 | 0.397 | 0.376 | 0.182 | 0.341 | 0.292 |
12/01/2019 | 0.231 | 0.337 | 0.462 | 0.186 | 0.273 | 0.338 |
Ave | 0.224 | 0.387 | 0.427 | 0.176 | 0.329 | 0.329 |
Day | RMES | ΔE | ||||
---|---|---|---|---|---|---|
ESART | SART | IRI-2016 | ESART | SART | IRI-2016 | |
17/03/2015 | 0.662 | 1.044 | 1.482 | 0.519 | 0.869 | 1.132 |
18/03/2015 | 0.774 | 1.558 | 2.806 | 0.614 | 1.208 | 2.081 |
19/03/2015 | 0.526 | 1.200 | 1.799 | 0.412 | 0.983 | 1.410 |
Ave | 0.662 | 1.044 | 1.482 | 0.519 | 0.869 | 1.132 |
Day | RMES | ΔE | ||||
---|---|---|---|---|---|---|
ESART | SART | IRI-2016 | ESART | SART | IRI-2016 | |
17/03/2015 | 1.602 | 1.816 | 2.096 | 1.151 | 1.383 | 1.479 |
18/03/2015 | 1.117 | 2.198 | 4.329 | 0.870 | 1.658 | 3.258 |
19/03/2015 | 0.992 | 1.334 | 2.051 | 0.740 | 1.008 | 1.567 |
Ave | 1.237 | 1.783 | 2.825 | 0.920 | 1.350 | 2.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Huo, X.; Liu, H.; Li, Y.; Sun, W. An Extended Simultaneous Algebraic Reconstruction Technique for Imaging the Ionosphere Using GNSS Data and Its Preliminary Results. Remote Sens. 2023, 15, 2939. https://doi.org/10.3390/rs15112939
Long Y, Huo X, Liu H, Li Y, Sun W. An Extended Simultaneous Algebraic Reconstruction Technique for Imaging the Ionosphere Using GNSS Data and Its Preliminary Results. Remote Sensing. 2023; 15(11):2939. https://doi.org/10.3390/rs15112939
Chicago/Turabian StyleLong, Yuanliang, Xingliang Huo, Haojie Liu, Ying Li, and Weihong Sun. 2023. "An Extended Simultaneous Algebraic Reconstruction Technique for Imaging the Ionosphere Using GNSS Data and Its Preliminary Results" Remote Sensing 15, no. 11: 2939. https://doi.org/10.3390/rs15112939
APA StyleLong, Y., Huo, X., Liu, H., Li, Y., & Sun, W. (2023). An Extended Simultaneous Algebraic Reconstruction Technique for Imaging the Ionosphere Using GNSS Data and Its Preliminary Results. Remote Sensing, 15(11), 2939. https://doi.org/10.3390/rs15112939