Spatiotemporal Evolution of Production–Living–Ecological Land and Its Eco-Environmental Response in China’s Coastal Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Classification of Predominant Function of Land
2.3.2. Degree of Single Land Function Change
2.3.3. Spatial Correlation Analysis
2.3.4. Eco-Environmental Response
- 1.
- Eco-environmental Quality Index
- 2.
- Analysis of the Characteristics of Eco-Environmental Quality
- 3.
- The Ecological Impact Rate of Production–Living–Ecological Land Change
3. Results
3.1. Distribution of PLEL
3.2. Evolution Pattern of PLEL
3.3. Gradient Characteristics of PLEL Distribution
3.3.1. Characteristics of Vertical Gradient
3.3.2. Characteristics of Horizontal Gradient
3.4. Hotspot Analysis of Development and Degradation of PLEL
3.5. Eco-Environmental Response Analysis
3.5.1. Eco-Environmental Quality Index Analysis
3.5.2. Spatial Characteristics of Eco-Environment Quality
3.5.3. Ecological Impact Rate of PLEL Transformation
4. Discussion
4.1. The Accuracy of PLEL Classification
4.2. Issues Involved in the Eco-Environmental Response of PLEL
4.3. Issues Involved in the Application of PLEL Evolution Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.; Wang, Y.; Shen, Z.; Liao, J.; Chen, J.; Sun, S. Long time-series mapping and change detection of coastal zone land use based on google earth engine and multi-source data fusion. Remote Sens. 2022, 14, 1. [Google Scholar] [CrossRef]
- Kirby, J.A.; Masselink, G.; Essex, S.; Poate, T.; Scott, T. Coastal adaptation to climate change through zonation: A review of coastal change management areas (CCMAs) in England. Ocean Cosat. Manag. 2021, 215, 105950. [Google Scholar] [CrossRef]
- Yang, F.S.; Yang, X.M.; Wang, Z.H.; Lu, C.; Li, Z.; Liu, Y.M. Object-based classification of cloudy coastal areas using medium-resolution optical and SAR images for vulnerability assessment of marine disaster. J. Oceanol. Limnol. 2019, 37, 1955–1970. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Xing, H.Q.; Hou, D.Y. Analysis of carbon emissions from land cover change during 2000 to 2020 in Shandong Province, China. Sci. Rep. 2022, 12, 8021. [Google Scholar] [CrossRef]
- Zong, S.S.; Hu, Y.C.; Zhang, Y.L.; Wang, W. Identification of land use conflicts in China’s coastal zones: From the perspective of ecological security. Ocean Cosat. Manag. 2021, 213, 105841. [Google Scholar] [CrossRef]
- Zou, L.L.; Liu, Y.S.; Wang, J.Y.; Yang, Y.Y.; Wang, Y.S. Land use conflict identification and sustainable development scenario simulation on China’s southeast coast. J. Clean. Prod. 2019, 238, 117899. [Google Scholar] [CrossRef]
- Bao, J.L.; Gao, S. Traditional coastal management practices and land use changes during the 16–20th centuries, Jiangsu Province, China. Ocean Cosat. Manag. 2016, 124, 10–21. [Google Scholar] [CrossRef]
- Zhang, J.J.; Su, F.Z. Land use change in the major bays along the coast of the South China Sea in southeast Asia from 1988 to 2018. Land 2020, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.S.; Yang, X.M.; Wang, Z.H.; Liu, Y.M.; Liu, B. Changes and regional differences in urban land areas on both banks of the strait of Malacca based on remote sensing. Sustainability 2020, 12, 9714. [Google Scholar] [CrossRef]
- Chen, J.; Shi, P.J. Discussion on functional land use clarification system. J. BNU (Nat. Sci.) 2005, 5, 536–540. [Google Scholar]
- Wang, D.; Jiang, D.; Fu, J.Y.; Lin, G.; Zhang, J.L. Comprehensive assessment of Production-Living-Ecological space based on the coupling coordination degree model. Sustainability 2020, 12, 2009. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.F.; Yu, C.; Wang, J.B.; Wang, M. The intensity analysis of Production Living Ecological land in Shandong Province, China. Sustainability 2020, 12, 8326. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Bao, W.K.; Li, Y.H.; Wang, Y.S.; Chen, Z.F. Land use transition and its eco-environmental effects in the Beijing-Tianjin-Hebei urban agglomeration: A Production-Living-Ecological perspective. Land 2020, 9, 285. [Google Scholar] [CrossRef]
- Fang, C.L.; Yang, J.Y.; Fang, J.W.; Huang, X.J.; Zhou, Y. Optimization transmission theory and technical pathways that describe multiscale urban agglomeration spaces. Chin. Geogr. Sci. 2018, 28, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Zhang, J.F.; Shi, Z.Q.; Wan, J.J.; Meng, B. Interpretation of mountain territory space and its optimized conceptual model and theoretical framework. Mt. Res. 2017, 35, 121–128. (In Chinese) [Google Scholar]
- Zhang, H.Q.; Xu, E.Q.; Zhu, H.Y. Ecological-Living-Productive land classification system in China. J. Resour. Ecol. 2017, 8, 121–128. (In Chinese) [Google Scholar]
- Yang, X.F. Study on the “Ecological-Living-Productive” Land Classification System and Their Spatial Characteristics in Hebei Province. Master’s Thesis, Chang’an University, Xi’an, China, 2019. (In Chinese). [Google Scholar]
- Duan, Y.M.; Wang, H.; Huang, A.; Xu, Y.Q.; Lu, L.H.; Ji, Z.X. Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior—A case study of Ertai Town, Zhangjiakou City. Land Use Pol. 2021, 106, 105457. [Google Scholar] [CrossRef]
- Fu, C.; Tu, X.Q.; Huang, A. Identification and characterization of production-living-ecological space in a central urban area based on POI data: A case study for Wuhan, China. Sustainability 2021, 13, 7691. [Google Scholar] [CrossRef]
- Tao, Y.Y.; Wang, Q.X. Quantitative recognition and characteristic analysis of production-living-ecological space evolution for five resource-based cities: Zululand, Xuzhou, Lota, Surf Coast and Ruhr. Remote Sens. 2021, 13, 1563. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Bao, W.K.; Liu, Y.S. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef]
- Wei, L.Y.; Zhang, Y.J.; Wang, L.Z.; Mi, X.Y.; Wu, X.Y.; Cheng, Z.L. Spatiotemporal evolution patterns of “Production-Living-Ecological” spaces and the coordination level and optimization of the functions in Jilin province. Sustainability 2021, 13, 13192. [Google Scholar] [CrossRef]
- Wu, J.S.; Zhang, D.N.; Wang, H.; Li, X.C. What is the future for production-living-ecological spaces in the Greater Bay Area? A multi-scenario perspective based on DEE. Ecol. Indic. 2021, 131, 108171. [Google Scholar] [CrossRef]
- Xie, X.T.; Li, X.S.; Fan, H.P.; He, W.K. Spatial analysis of production-living-ecological functions and zoning method under symbiosis theory of Henan, China. Environ. Sci. Pollut. Res. 2021, 28, 69093–69110. [Google Scholar] [CrossRef]
- Song, X.; Huang, Y.; Wu, Z.; Ouyang, Z. Does cultivated land function transition occur in China? J. Geogr. Sci. 2015, 25, 817–835. [Google Scholar] [CrossRef]
- Warren, R.J.; Reed, K.; Olejnizcak, M.; Potts, D.L. Rural land use bifurcation in the urban-rural gradient. Urban Ecosyst. 2018, 21, 577–583. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, L.; Wang, Y. Analysis of land use changes in the coastal zone of Shandong Province from 1980 to 2015. SHH Land Res. 2019, 40, 38–42. (In Chinese) [Google Scholar]
- Asabere, S.B.; Acheampong, R.A.; Ashiagbor, G.; Beckers, S.C.; Keck, M.; Erasmi, S.; Schanze, J.; Sauer, D. Urbanization, land use transformation and spatio-environmental impacts: Analyses of trends and implications in major metropolitan regions of Ghana. Land Use Pol. 2020, 96, 104707. [Google Scholar] [CrossRef]
- Asadolahi, Z.; Salmanmahiny, A.; Sakieh, Y.; Mirkarimi, S.H.; Baral, H.; Azimi, M. Dynamic trade-off analysis of multiple ecosystem services under land use change scenarios: Towards putting ecosystem services into planning in Iran. Ecol. Complex. 2018, 36, 250–260. [Google Scholar] [CrossRef]
- Chen, W.X.; Chi, G.Q.; Li, J.F. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Long, H.L.; Li, T.T.; Tu, S.S. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Pol. 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Long, H.L.; Liu, Y.Q.; Hou, X.G.; Li, T.T.; Li, Y.R. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, Y.F.; Zhang, J.W.; Wang, Q. Land use transition in coastal area and its associated eco-environmental effect: A case study of coastal area in Fujian Province. Acta Sci. Circumstantiae 2021, 41, 3927–3937. (In Chinese) [Google Scholar]
- Li, X.; Fang, C.; Huang, J.; Mao, H. The urban land use transformations and associated effects on eco-environment in northwest China arid region: A case study in Hexi region, Gansu province. Quat. Sci. 2003, 23, 280–290. (In Chinese) [Google Scholar]
- Yan, L.; Huang, X.; Hong, Y.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area—A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar]
- Wei, Y.; Zhang, Y.; Chen, L.; Chen, H.; Zhang, X.; Liu, P. Production–living–ecological space transition and its eco-environmental effects based on an improved areaweighted method: A case study of Gangcheng District, a typical industrial base in China. Front. Environ. Sci. 2022, 10, 972786. [Google Scholar] [CrossRef]
- Xu, Y.; Li, P.; Pan, J.; Zhang, Y.; Dang, X.; Cao, X.; Cui, J.; Yang, Z. Eco-Environmental Effects and Spatial Heterogeneity of “Production-Ecology-Living” Land Use Transformation: A Case Study for Ningxia, China. Sustainability 2022, 14, 9659. [Google Scholar] [CrossRef]
- Li, K.; Zhang, B.; Xiao, W.; Lu, Y. Land Use Transformation Based on Production–Living–Ecological Space and Associated Eco-Environment Effects: A Case Study in the Yangtze River Delta Urban Agglomeration. Land 2022, 11, 1076. [Google Scholar] [CrossRef]
- Song, Y.; Xia, S.; Xue, D.; Luo, S.; Zhang, L.; Wang, D. Land Space Change Process and Its Eco-Environmental Effects in the Guanzhong Plain Urban Agglomeration of China. Land 2022, 11, 1547. [Google Scholar] [CrossRef]
- Wu, X.; Ding, J.; Lu, B.; Wan, Y.; Shi, L.; Wen, Q. Eco-Environmental Effects of Changes in Territorial Spatial Pattern and Their Driving Forces in Qinghai, China (1980–2020). Land 2022, 11, 1772. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Tu, S. Comprehensive Eco-Environmental Effects Caused by Land Use Transition from the Perspective of Production–Living–Ecological Spaces in a Typical Region: A Case Study of the Guangxi Zhuang Autonomous Region, China. Land 2022, 11, 2160. [Google Scholar] [CrossRef]
- Ma, H.; Shi, L. Assessment of eco-environmental quality of Western Taiwan Straits Economic Zone. Environ. Monit. Assess. 2016, 188, 311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, H.; Xu, E. Information entropy and elasticity analysis of the land use structure change influencing ecoenvironmental quality in Qinghai-Tibet Plateau from 1990 to 2015. Environ. Sci. Pollut. Res. 2022, 29, 18348–18364. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.H.; Guan, S.; Xing, W.X. Integrated coastal zone management based on land and sea integration: From planning to legislation. China Land 2019, 2, 8–11. (In Chinese) [Google Scholar]
- Di, X.; Hou, X.; Wang, Y. Spatial-temporal characteristics of land use intensity of coastal zone in China during 2000–2010. Chin. Geogr. Sci. 2015, 25, 51–61. [Google Scholar] [CrossRef]
- Du, P.; Hou, X.; Xu, H. Dynamic Expansion of Urban Land in China’s Coastal Zone since 2000. Remote Sens. 2022, 14, 916. [Google Scholar] [CrossRef]
- Shi, S.; Dou, Y.; Chen, Y. Remote sensing monitoring based analysis of the spatio-temporal changing characteristics of regional urban expansion and urban land cover in China’s coastal zones. Remote Sens. Nat. Res. 2022, 34, 76–86. (In Chinese) [Google Scholar]
- Wu, L.; Hou, X. Analysis of land use change in the coastal zone of Circum the Bohai Sea Region during 2000 to 2010. Mar. Sci. 2015, 39, 101–110. (In Chinese) [Google Scholar]
- Yan, F.; Wang, X.; Huang, C.; Zhang, J.; Su, F.; Zhao, Y.; Lyne, V. Sea Reclamation in Mainland China: Process, Pattern, and Management. Land Use Pol. 2023, 127, 106555. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. J. Geog. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Kuang, W.H.; Zhang, S.W.; Du, G.M.; Yan, C.Z.; Wu, S.X.; Li, R.D.; Lu, D.S.; Peng, T.; Ning, J.; Guo, C.Q.; et al. Remotely sensed mapping and analysis of spatio-temporal patterns of land use change across China in 2015–2020. Acta Geogr. Sin. 2022, 77, 1056–1071. [Google Scholar]
- Pang, R.; Hu, N.; Zhou, J.; Sun, D.; Ye, H. Study on Eco-Environmental Effects of Land-Use Transitions and Their Influencing Factors in the Central and Southern Liaoning Urban Agglomeration: A Production–Living–Ecological Perspective. Land 2022, 11, 937. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xia, T.; Li, Y.; Li, Z. Land-use function evolution and eco-environmental effects in the tarim river basin from the perspective of production–living–ecological space. Front. Environ. Sci. 2022, 10, 1004274. [Google Scholar] [CrossRef]
- Hu, P.P.; Li, F.; Sun, X.; Liu, Y.L.; Chen, X.C.; Hu, D. Assessment of land-use/cover changes and its ecological effect in rapidly urbanized areas-taking Pearl River Delta urban agglomeration as a case. Sustainability 2021, 13, 5075. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.X.; Chen, B.Q.; Yang, C.; Qi, D.L.; Lan, G.Y.; Fraedrich, K. Effects of land-use change on eco-environmental quality in Hainan Island, China. Ecol. Indic. 2020, 109, 105777. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Zhang, F.P. Spatial-temporal variation characteristics of NPP in the Heihe river basin, northwestern China, in a recent 10-year period calculated by CASA model. J. Coast. Res. 2017, 80, 36–47. [Google Scholar] [CrossRef]
- Kong, D.Y.; Chen, H.G.; Wu, K.S. The evolution of “Production-Living-Ecological” space, eco-environmental effects and its influencing factors in China. J. Nat. Resour. 2021, 36, 1116–1135. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Q.K.; Duan, X.J.; Wang, L.; Jin, Z.F. Land use transformation based on ecological-production-living spaces and associated eco-environment effects: A case study in the Yangtze River Delta. Sci. Geogr. Sin. 2018, 38, 97–106. [Google Scholar]
- Huang, A.; Xu, Y.Q.; Lu, L.; Liu, C.; Zhang, Y.; Hao, J.; Wang, H. Research progress of the identification and optimization of production-living-ecological spaces. Prog. Geogr. 2020, 39, 503–518. [Google Scholar] [CrossRef]
- Li, X.T.; Hu, T.Y.; Gong, P.; Du, S.H.; Chen, B.; Li, X.C.; Dai, Q. Mapping essential urban land use categories in Beijing with a fast area of interest (AOI)-based method. Remote Sens. 2021, 13, 477. [Google Scholar] [CrossRef]
Predominant Land Function | EI | Land Use (EI) | ||
---|---|---|---|---|
First-Level | Second-Level | Third-Level | ||
Production land | - | Agricultural production land | 0.28 | Paddy field (0.25), dry farmland (0.3) |
Other production lands | 0.15 | Other construction lands such as industrial, mining, and transportation (0.15) | ||
Ecological land | Green ecological land | Forest ecological land | 0.83 | Forest (0.95), shrubland (0.65), sparse forest land (0.45), other forest lands (0.4) |
Grassland ecological land | 0.60 | High-(0.75), medium-(0.45), and low-coverage grassland (0.2) | ||
White ecological land | - | 0.08 | Bare land (0.05), sandy land (0.01), Gobi (0.01), saline land (0.05), marshland (0.65), barren rocky land (0.01), other unused lands (0.01) | |
Blue ecological land | - | 0.73 | Rivers (0.55), lakes (0.75), ponds (0.55), permanent ice and snow (0.9), tidal flats (0.45), beach lands (0.55) | |
Living land | - | - | 0.20 | Urban land (0.20), rural residential land (0.20) |
2000–2010 | 2010–2020 | 2000–2020 | ||||
---|---|---|---|---|---|---|
Inter-Year Variation (km2) | Dynamic Degree (%) | Inter-Year Variation (km2) | Dynamic Degree (%) | Inter-Year Variation (km2) | Dynamic Degree (%) | |
Production Land | −4798.30 | −0.21 | −7154.39 | −0.32 | −11,952.69 | −0.26 |
Green Ecological Land | −8065.85 | −0.35 | 865.17 | 0.04 | −7200.68 | −0.16 |
White Ecological Land | −1803.70 | −4.50 | 254.35 | 1.16 | −1549.35 | −1.94 |
Blue Ecological Land | 4251.65 | 1.91 | 2190.68 | 0.83 | 6442.33 | 1.44 |
Living Land | 11,908.11 | 3.59 | 4235.79 | 0.94 | 16,143.90 | 2.43 |
Eco-Environmental Change | 2000–2010 | 2010–2020 | ||||
---|---|---|---|---|---|---|
Transformation Model | EIR | (%) | Transformation Model | EIR | (%) | |
Eco-Environment Improvement | OPL→BEL | 0.012050 | 53.12 | OPL→BEL | 0.030563 | 67.37 |
APL→BEL | 0.002889 | 12.74 | APL→FEL | 0.008495 | 18.73 | |
WEL→BEL | 0.002020 | 8.90 | APL→BEL | 0.001512 | 3.33 | |
APL→FEL | 0.002004 | 8.84 | APL→GLEL | 0.001268 | 2.79 | |
GLEL→FEL | 0.001028 | 4.53 | GLEL→FEL | 0.000717 | 1.58 | |
GLEL→BEL | 0.000767 | 3.38 | WEL→BEL | 0.000667 | 1.47 | |
Total | 0.020758 | 91.51 | Total | 0.043221 | 95.27 | |
Eco-Environment Deterioration | GLEL→APL | −0.005273 | 19.07 | BEL→OPL | −0.003818 | 21.99 |
APL→LL | −0.005089 | 18.40 | BEL→WEL | −0.003533 | 20.35 | |
BEL→OPL | −0.003548 | 12.83 | BEL→APL | −0.001706 | 9.82 | |
FEL→APL | −0.002961 | 10.71 | FEL→OPL | −0.001387 | 7.99 | |
BEL→APL | −0.002071 | 7.49 | APL→LL | −0.001346 | 7.75 | |
FEL→LL | −0.001327 | 4.80 | APL→OPL | −0.001270 | 7.31 | |
APL→OPL | −0.001315 | 4.75 | FEL→APL | −0.001191 | 6.86 | |
BEL→LL | −0.001127 | 4.07 | FEL→LL | −0.000705 | 4.06 | |
FEL→OPL | −0.001118 | 4.04 | BEL→LL | −0.000585 | 3.37 | |
GLEL→WEL | −0.000867 | 3.14 | BEL→GLEL | −0.000333 | 1.92 | |
Total | −0.024696 | 89.30 | Total | −0.015875 | 91.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Yang, X.; Wang, Z.; Sun, Y.; Zhang, Y.; Xing, H.; Wang, Q. Spatiotemporal Evolution of Production–Living–Ecological Land and Its Eco-Environmental Response in China’s Coastal Zone. Remote Sens. 2023, 15, 3039. https://doi.org/10.3390/rs15123039
Yang F, Yang X, Wang Z, Sun Y, Zhang Y, Xing H, Wang Q. Spatiotemporal Evolution of Production–Living–Ecological Land and Its Eco-Environmental Response in China’s Coastal Zone. Remote Sensing. 2023; 15(12):3039. https://doi.org/10.3390/rs15123039
Chicago/Turabian StyleYang, Fengshuo, Xiaomei Yang, Zhihua Wang, Yingjun Sun, Yinghui Zhang, Huaqiao Xing, and Qi Wang. 2023. "Spatiotemporal Evolution of Production–Living–Ecological Land and Its Eco-Environmental Response in China’s Coastal Zone" Remote Sensing 15, no. 12: 3039. https://doi.org/10.3390/rs15123039
APA StyleYang, F., Yang, X., Wang, Z., Sun, Y., Zhang, Y., Xing, H., & Wang, Q. (2023). Spatiotemporal Evolution of Production–Living–Ecological Land and Its Eco-Environmental Response in China’s Coastal Zone. Remote Sensing, 15(12), 3039. https://doi.org/10.3390/rs15123039