Characteristics of Air Pollutant Distribution and Sources in the East China Sea and the Yellow Sea in Spring Based on Multiple Observation Methods
Abstract
:1. Introduction
2. Experimental Methods
2.1. The Cruise Route
2.2. In Situ Observation
2.3. Observation Data Correction
2.4. AAE Calculation and AE Acquisition
2.5. Satellite and Reanalysis Datasets
2.6. Backward Trajectories
3. Results and Discussion
3.1. Carbonaceous Aerosols
3.1.1. BC Variation
3.1.2. The Relationship between BC and Other Variables
3.1.3. Backward Trajectories of BC
3.1.4. Optical Properties
Locations | Time | AAE or AE | Source | |||||
---|---|---|---|---|---|---|---|---|
Beijing, China | 2005–2017 | (Annual) | (Spring) | (Summer) | [82] | |||
0.00–1.70 | 1.19 ± 0.21 | 0.75 ± 0.33 | ||||||
(Autumn) | (Winter) | |||||||
0.85 ± 0.17 | 0.85 ± 0.32 | |||||||
September–November 2015 | [43] | |||||||
Lulang, China | 1.12 ± 0.37 | 1.34 ± 0.47 | 0.97 ± 0.31 | |||||
Lhasa, China | 1.04 ± 0.09 | 1.12 ± 0.15 | 0.94 ± 0.07 | |||||
Sanya, SCS | April–May 2017 | [78] | ||||||
1.06 ± 0.03 | 1.75 ± 0.06 | 0.96 ± 0.06 | ||||||
Okinawa, Japan | 2006–2008 | [80] | ||||||
3.06 ± 1.00 | 3.34 ± 0.86 | 1.94 ± 0.74 | ||||||
YS+ECS, ship-based | 9–26 April 2022 | This study | ||||||
1.32 ± 0.42 | 1.73 ± 0.07 | 0.92 ± 0.25 | ||||||
1–30 April 2022 | 1 | 2 | ||||||
YS, MERRA-2 | 1.44 | −0.06 | 2.01 | 0.03 | 1.75 | 0.99 | ||
ECS, MERRA-2 | 1.45 | −0.05 | 1.98 | 0.02 | 1.65 | 1.01 |
3.2. Gaseous Pollutants
3.2.1. NO2 in the Troposphere
3.2.2. NO2 in the Stratosphere
3.2.3. CO in the Total Column
4. Conclusions
- (1)
- Compared with the BC observation on the land near the ECS, the in situ ship-based data (1.35 ± 0.78 μg/m3) are lower, but higher than the previous NWPO data. Concentration accumulation may have occurred at some repeatedly passing points in the ship route, which may have affected the analysis of pollution causes.
- (2)
- The backward trajectories of BC show that the main air mass sources in spring are the northern Eurasian continent, Shandong Peninsula, the ECS and the NWPO. The BC concentration in the eastern marginal seas of China is influenced by the transport of marine sources like ship emissions. Attention should be paid to the remote NWPO and the interior of the ECS.
- (3)
- The calculated AAE during the cruise conforms to the rule of . BC is more likely to originate from BB in the shortwave band (~370 nm) and from fossil fuel combustion in the longwave band (~660 nm). Generally, OC, SO42− and BC reported higher AE values, which indicates fine-mode aerosols, while dust and sea salt revealed lower AE values, which could be utilized to classify the aerosols as being coarse-mode. OC’s high AE means that anthropogenic emissions can be a significant source of OC. The process of BBA mixed with sea salt could contribute to the decline in BBA’s AE.
- (4)
- The emissions of ships accumulated in offshore ports and non-terrestrial pollutants affect the distribution of tropospheric NO2 in the ECS. Tropospheric NO2 over the ECS and the YS shows an increasing trend. Tropospheric NO2 over the YS has the highest value (up to 12 × 1015 molec/cm2).
- (5)
- Stratospheric NO2 is distributed along the north and south, with the maximum value in the marginal seas near the Shandong Peninsula of China (up to 3.3 × 1015 molec/cm2). The variation gradient in NO2 was lower in the stratosphere compared to that in the troposphere, especially in the southern YS. It cannot be ignored that there is potential vertical exchange of NO2 over the ECS in spring.
- (6)
- CO mainly accumulates in the south and east of the ECS and the east of the YS, while variation over the eastern YS is relatively frequent. The area near the Korean Peninsula over the YS has extremely high values (up to 1.35 × 1017 molec/cm2).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Dowd, C.D.; de Leeuw, G. Marine Aerosol Production: A Review of the Current Knowledge. Philos. Trans. R. Soc. A 2007, 365, 1753–1774. [Google Scholar] [CrossRef] [PubMed]
- Andreae, M.O.; Rosenfeld, D. Aerosol–Cloud–Precipitation Interactions. Part 1. The Nature and Sources of Cloud-Active Aerosols. Earth-Sci. Rev. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- Su, Y.; Han, Y.; Luo, H.; Zhang, Y.; Shao, S.; Xie, X. Physical-Optical Properties of Marine Aerosols over the South China Sea: Shipboard Measurements and MERRA-2 Reanalysis. Remote Sens. 2022, 14, 2453. [Google Scholar] [CrossRef]
- Tian, M.; Li, H.; Wang, G.; Fu, M.; Qin, X.; Lu, D.; Liu, C.; Zhu, Y.; Luo, X.; Deng, C.; et al. Seasonal Source Identification and Formation Processes of Marine Particulate Water Soluble Organic Nitrogen over an Offshore Island in the East China Sea. Sci. Total Environ. 2023, 863, 160895. [Google Scholar] [CrossRef] [PubMed]
- Duflot, V.; Bègue, N.; Pouliquen, M.-L.; Goloub, P.; Metzger, J.-M. Aerosols on the Tropical Island of La Réunion (21°S, 55°E): Assessment of Climatology, Origin of Variability and Trend. Remote Sens. 2022, 14, 4945. [Google Scholar] [CrossRef]
- Wang, L.; Mačak, M.B.; Stanič, S.; Bergant, K.; Gregorič, A.; Drinovec, L.; Močnik, G.; Yin, Z.; Yi, Y.; Müller, D.; et al. Investigation of Aerosol Types and Vertical Distributions Using Polarization Raman Lidar over Vipava Valley. Remote Sens. 2022, 14, 3482. [Google Scholar] [CrossRef]
- Brooks, S.D.; Thornton, D.C.O. Marine Aerosols and Clouds. Annu. Rev. Mar. Sci. 2018, 10, 289–313. [Google Scholar] [CrossRef]
- Carpenter, L.J.; Fleming, Z.L.; Read, K.A.; Lee, J.D.; Moller, S.J.; Hopkins, J.R.; Purvis, R.M.; Lewis, A.C.; Müller, K.; Heinold, B.; et al. Seasonal Characteristics of Tropical Marine Boundary Layer Air Measured at the Cape Verde Atmospheric Observatory. J. Atmos. Chem. 2010, 67, 87–140. [Google Scholar] [CrossRef]
- Xu, W.; Ovadnevaite, J.; Fossum, K.N.; Lin, C.; Huang, R.-J.; Ceburnis, D.; O’Dowd, C. Sea Spray as an Obscured Source for Marine Cloud Nuclei. Nat. Geosci. 2022, 15, 282–286. [Google Scholar] [CrossRef]
- Fierce, L.; Onasch, T.B.; Cappa, C.D.; Mazzoleni, C.; China, S.; Bhandari, J.; Davidovits, P.; Fischer, D.A.; Helgestad, T.; Lambe, A.T.; et al. Radiative Absorption Enhancements by Black Carbon Controlled by Particle-to-Particle Heterogeneity in Composition. Proc. Natl. Acad. Sci. USA 2020, 117, 5196–5203. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment: BLACK CARBON IN THE CLIMATE SYSTEM. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Adachi, K.; Buseck, P.R. Internally Mixed Soot, Sulfates, and Organic Matter in Aerosol Particles from Mexico City. Atmos. Chem. Phys. 2008, 8, 6469–6481. [Google Scholar] [CrossRef]
- Sharma, N.; China, S.; Bhandari, J.; Gorkowski, K.; Dubey, M.; Zaveri, R.A.; Mazzoleni, C. Physical Properties of Aerosol Internally Mixed With Soot Particles in a Biogenically Dominated Environment in California. Geophys. Res. Lett. 2018, 45, 11473–11482. [Google Scholar] [CrossRef]
- Cappa, C.D.; Onasch, T.B.; Massoli, P.; Worsnop, D.R.; Bates, T.S.; Cross, E.S.; Davidovits, P.; Hakala, J.; Hayden, K.L.; Jobson, B.T.; et al. Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science 2012, 337, 1078–1081. [Google Scholar] [CrossRef]
- Liu, S.; Aiken, A.C.; Gorkowski, K.; Dubey, M.K.; Cappa, C.D.; Williams, L.R.; Herndon, S.C.; Massoli, P.; Fortner, E.C.; Chhabra, P.S.; et al. Enhanced Light Absorption by Mixed Source Black and Brown Carbon Particles in UK Winter. Nat. Commun. 2015, 6, 8435. [Google Scholar] [CrossRef] [PubMed]
- Hopke, P.K. An Introduction to Receptor Modeling. Chemom. Intell. Lab. Syst. 1991, 10, 21–43. [Google Scholar] [CrossRef]
- Chen, L.; Gao, Y.; Zhang, M.; Fu, J.S.; Zhu, J.; Liao, H.; Li, J.; Huang, K.; Ge, B.; Wang, X.; et al. MICS-Asia III: Multi-Model Comparison and Evaluation of Aerosol over East Asia. Atmos. Chem. Phys. 2019, 19, 11911–11937. [Google Scholar] [CrossRef]
- Tian, P.; Zhang, L.; Ma, J.; Tang, K.; Xu, L.; Wang, Y.; Cao, X.; Liang, J.; Ji, Y.; Jiang, J.H.; et al. Radiative Absorption Enhancement of Dust Mixed with Anthropogenic Pollution over East Asia. Atmos. Chem. Phys. 2018, 18, 7815–7825. [Google Scholar] [CrossRef]
- Adachi, K.; Chung, S.H.; Buseck, P.R. Shapes of Soot Aerosol Particles and Implications for Their Effects on Climate. J. Geophys. Res. 2010, 115, D15206. [Google Scholar] [CrossRef]
- Scarnato, B.V.; Vahidinia, S.; Richard, D.T.; Kirchstetter, T.W. Effects of Internal Mixing and Aggregate Morphology on Optical Properties of Black Carbon Using a Discrete Dipole Approximation Model. Atmos. Chem. Phys. 2013, 13, 5089–5101. [Google Scholar] [CrossRef]
- Wu, E. The Transformational Relation between Ozone and Nitrogen-Oxide in Ambient Air over Summer. Environ. Sci. Technol. 2006, 29, 56–58. (In Chinese) [Google Scholar]
- Wang, F.; Xu, J.; Huang, Y.; Xiu, G. Characterization of Black Carbon and Its Correlations with VOCs in the Northern Region of Hangzhou Bay in Shanghai, China. Atmosphere 2021, 12, 870. [Google Scholar] [CrossRef]
- Gu, R.; Wang, W.; Peng, X.; Xia, M.; Zhao, M.; Zhang, Y.; Liu, Y.; Shen, H.; Xue, L.; Wang, T.; et al. Nitrous Acid in the Polluted Coastal Atmosphere of the South China Sea: Ship Emissions, Budgets, and Impacts. Sci. Total Environ. 2022, 826, 153692. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Badia, A.; Fernandez, R.; Mahajan, A.; Lopez-Norena, A.; Zhang, Y.; Wang, S.; Puliafito, E.; Cuevas, C.; Saiz-Lopez, A. Chemical Interactions Between Ship-Originated Air Pollutants and Ocean-Emitted Halogens. J. Geophys. Res. Atmos. 2021, 126, e2020JD034175. [Google Scholar] [CrossRef]
- Shang, F.; Chen, D.; Guo, X.; Lang, J.; Zhou, Y.; Li, Y.; Fu, X. Impact of Sea Breeze Circulation on the Transport of Ship Emissions in Tangshan Port, China. Atmosphere 2019, 10, 723. [Google Scholar] [CrossRef]
- Grzybowski, P.T.; Markowicz, K.M.; Musiał, J.P. Estimations of the Ground-Level NO2 Concentrations Based on the Sentinel-5P NO2 Tropospheric Column Number Density Product. Remote Sens. 2023, 15, 378. [Google Scholar] [CrossRef]
- Yoon, J.; Burrows, J.P.; Vountas, M.; von Hoyningen-Huene, W.; Chang, D.Y.; Richter, A.; Hilboll, A. Changes in Atmospheric Aerosol Loading Retrieved from Space-Based Measurements during the Past Decade. Atmos. Chem. Phys. 2014, 14, 6881–6902. [Google Scholar] [CrossRef]
- Yang, T.; Chen, Y.; Zhou, S.; Li, H.; Wang, F.; Zhu, Y. Solubilities and Deposition Fluxes of Atmospheric Fe and Cu over the Northwest Pacific and Its Marginal Seas. Atmos. Environ. 2020, 239, 117763. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, L.; Guo, T.; Lin, T.; Guo, Z. Aeolian Transport and Deposition of Carbonaceous Aerosols over the Northwest Pacific Ocean in Spring. Atmos. Environ. 2020, 223, 117209. [Google Scholar] [CrossRef]
- Li, J.; Zhai, X.; Zhang, H.; Yang, G. Temporal Variations in the Distribution and Sea-to-Air Flux of Marine Isoprene in the East China Sea. Atmos. Environ. 2018, 187, 131–143. [Google Scholar] [CrossRef]
- Ding, M.; Tian, B.; Zhang, T.; Tang, J.; Peng, H.; Bian, L.; Sun, W. Shipborne Observations of Atmospheric Black Carbon Aerosol from Shanghai to the Arctic Ocean during the 7th Chinese Arctic Research Expedition. Atmos. Res. 2018, 210, 34–40. [Google Scholar] [CrossRef]
- Fang, Y.; Cao, F.; Fan, M.; Zhang, Y. Chemical Characteristics and Source Apportionment of Water-Soluble Ions in Atmosphere Aerosols over the East China Sea Island During Winter and Summer. Huanjing Kexue 2020, 41, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Li, J.; Gao, H.; Wang, H.; Che, H.; Chen, B. Satellite-Observed Transport of Dust to the East China Sea and the North Pacific Subtropical Gyre: Contribution of Dust to the Increase in Chlorophyll during Spring 2010. Atmosphere 2016, 7, 152. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L.; Tans, P.P.; Zang, K.; Cheng, S. Ratios of Greenhouse Gas Emissions Observed over the Yellow Sea and the East China Sea. Sci. Total Environ. 2018, 633, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-H.; Yang, G.-P.; Liu, C.-Y.; Su, L.-P. Chemical Characteristics of Aerosol Composition over the Yellow Sea and the East China Sea in Autumn. J. Atmos. Sci. 2013, 70, 1784–1794. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Wong, G.T.F.; Gong, G.-C.; Shiah, F.-K.; Huang, Y.-T.; Kao, S.-J.; Tsai, F.; Candice Lung, S.-C.; Lin, F.-J.; Lin, I.-I.; et al. Sources, Solubility, and Dry Deposition of Aerosol Trace Elements over the East China Sea. Mar. Chem. 2010, 120, 116–127. [Google Scholar] [CrossRef]
- He, Y.; Yang, G.; Zhang, H. Composition and source of atmosphere aerosol water soluble ions over the East China Sea in winter. Environ. Sci. 2011, 32, 2197–2203. [Google Scholar]
- Gao, Y.; Arimoto, R.; Duce, R.A.; Chen, L.Q.; Zhou, M.Y.; Gu, D.Y. Atmospheric Non-Sea-Salt Sulfate, Nitrate and Methanesulfonate over the China Sea. J. Geophys. Res. Atmos. 1996, 101, 12601–12611. [Google Scholar] [CrossRef]
- Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual-spot” Aethalometer: An Improved Measurement of Aerosol Black Carbon with Real-Time Loading Compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. [Google Scholar] [CrossRef]
- Virkkula, A.; Mäkelä, T.; Hillamo, R.; Yli-Tuomi, T.; Hirsikko, A.; Hämeri, K.; Koponen, I.K. A Simple Procedure for Correcting Loading Effects of Aethalometer Data. J. Air Waste Manag. Assoc. 2007, 57, 1214–1222. [Google Scholar] [CrossRef]
- Gupta, P.; Singh, S.P.; Jangid, A.; Kumar, R. Characterization of Black Carbon in the Ambient Air of Agra, India: Seasonal Variation and Meteorological Influence. Adv. Atmos. Sci. 2017, 34, 1082–1094. [Google Scholar] [CrossRef]
- Ångström, A. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar] [CrossRef]
- Zhu, C.-S.; Cao, J.-J.; Hu, T.-F.; Shen, Z.-X.; Tie, X.-X.; Huang, H.; Wang, Q.-Y.; Huang, R.-J.; Zhao, Z.-Z.; Močnik, G.; et al. Spectral Dependence of Aerosol Light Absorption at an Urban and a Remote Site over the Tibetan Plateau. Sci. Total Environ. 2017, 590–591, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Ångström, A. Techniques of Determining the Turbidity of the Atmosphere. Tellus 1961, 13, 214–223. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Sirois, A.; Bottenheim, J.W. Use of Backward Trajectories to Interpret the 5-Year Record of PAN and O3 Ambient Air Concentrations at Kejimkujik National Park, Nova Scotia. J. Geophys. Res. 1995, 100, 2867. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-Based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. Environ. Modell. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Wang, Y.Q. An Open Source Software Suite for Multi-Dimensional Meteorological Data Computation and Visualisation. J. Open Res. Softw. 2019, 7, 21. [Google Scholar] [CrossRef]
- Cape, J.N.; Coyle, M.; Dumitrean, P. The Atmospheric Lifetime of Black Carbon. Atmos. Environ. 2012, 59, 256–263. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected Air Pollution with Marked Emission Reductions during the COVID-19 Outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Xian, J.; Shen, F.; Zhang, L.; Deng, B.; Zhang, Y.; Ge, X. One-Year Real-Time Measurement of Black Carbon in the Rural Area of Qingdao, Northeastern China: Seasonal Variations, Meteorological Effects, and the COVID-19 Case Analysis. Atmosphere 2021, 12, 394. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, F.; Gao, J.; Cui, S.; Yue, H.; Wang, J.; Chen, M.; Ge, X. Characteristics and Potential Sources of Black Carbon Particles in Suburban Nanjing, China. Atmos. Pollut. Res. 2020, 11, 981–991. [Google Scholar] [CrossRef]
- Wei, C.; Wang, M.H.; Fu, Q.Y.; Dai, C.; Huang, R.; Bao, Q. Temporal Characteristics and Potential Sources of Black Carbon in Megacity Shanghai, China. J. Geophys. Res. Atmos. 2020, 125, e2019JD031827. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, Z.; Chen, J.; Xu, L.; Hong, Y.; Li, M.; Hao, H.; Chen, Y.; Qiu, Y.; Wu, X.; et al. Impact of Control Measures and Typhoon Weather on Characteristics and Formation of PM2.5 during the 2016 G20 Summit in China. Atmos. Environ. 2020, 224, 117312. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, W.; Wu, L.; Hu, W.; Ren, L.; Wang, X.; Fu, P. Black Carbon in Xiamen, China: Temporal Variations, Transport Pathways and Impacts of Synoptic Circulation. Chemosphere 2020, 241, 125133. [Google Scholar] [CrossRef]
- Sandradewi, J.; Prévôt, A.S.H.; Szidat, S.; Perron, N.; Alfarra, M.R.; Lanz, V.A.; Weingartner, E.; Baltensperger, U. Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter. Environ. Sci. Technol. 2008, 42, 3316–3323. [Google Scholar] [CrossRef]
- Chen, W.; Cao, X.; Ran, H.; Chen, T.; Yang, B.; Zheng, X. Concentration and Source Allocation of Black Carbon by AE-33 Model in Urban Area of Shenzhen, Southern China. J. Environ. Health Sci. Eng. 2022, 20, 469–483. [Google Scholar] [CrossRef]
- Xiao, H.-W.; Mao, D.-Y.; Huang, L.-L.; Xiao, H.-Y.; Wu, J.-F. Evaluation of Black Carbon Source Apportionment Based on One Year’s Daily Observations in Beijing. Sci. Total Environ. 2021, 773, 145668. [Google Scholar] [CrossRef]
- Shi, S.; Cheng, T.; Gu, X.; Guo, H.; Wu, Y.; Wang, Y.; Bao, F.; Zuo, X. Probing the Dynamic Characteristics of Aerosol Originated from South Asia Biomass Burning Using POLDER/GRASP Satellite Data with Relevant Accessory Technique Design. Environ. Int. 2020, 145, 106097. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Wang, T.; Han, J.; Xu, B.; Ma, D.; Zhang, M.; Li, S.; Zhuang, B.; Li, M.; Xie, M. Spatial and Temporal Variation of Air Pollutant Emissions from Forest Fires in China. Atmos. Environ. 2022, 281, 119156. [Google Scholar] [CrossRef]
- Zhao, H.; Che, H.; Gui, K.; Ma, Y.; Wang, Y.; Wang, H.; Zheng, Y.; Zhang, X. Interdecadal Variation in Aerosol Optical Properties and Their Relationships to Meteorological Parameters over Northeast China from 1980 to 2017. Chemosphere 2020, 247, 125737. [Google Scholar] [CrossRef] [PubMed]
- Taketani, F.; Miyakawa, T.; Takigawa, M.; Yamaguchi, M.; Komazaki, Y.; Mordovskoi, P.; Takashima, H.; Zhu, C.; Nishino, S.; Tohjima, Y.; et al. Characteristics of Atmospheric Black Carbon and Other Aerosol Particles over the Arctic Ocean in Early Autumn 2016: Influence from Biomass Burning as Assessed with Observed Microphysical Properties and Model Simulations. Sci. Total Environ. 2022, 848, 157671. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, Z.; Zhao, J.; Zhang, Y.; Yu, Y.; Mu, Y.; Yao, X.; Feng, L.; Zhang, F.; Chen, Y.; et al. Impact of Air Emissions from Shipping on Marine Phytoplankton Growth. Sci. Total Environ. 2021, 769, 145488. [Google Scholar] [CrossRef]
- Hulswar, S.; Menon, H.B.; Anilkumar, N. Physical-Chemical Characteristics of Composite Aerosols in the Indian Ocean Sector of the Southern Ocean and Its Associated Effect on Insolation: A Climate Perspective. Deep Sea Res. Part II 2020, 178, 104801. [Google Scholar] [CrossRef]
- Wu, C.; Trounce, H.; Dunne, E.; Griffith, D.W.T.; Chambers, S.D.; Williams, A.G.; Humphries, R.S.; Cravigan, L.T.; Miljevic, B.; Zhang, C.; et al. Atmospheric Concentrations and Sources of Black Carbon over Tropical Australian Waters. Sci. Total Environ. 2023, 856, 159143. [Google Scholar] [CrossRef]
- Zanatta, M.; Bozem, H.; Köllner, F.; Schneider, J.; Kunkel, D.; Hoor, P.; De Faria, J.; Petzold, A.; Bundke, U.; Hayden, K.; et al. Airborne Survey of Trace Gases and Aerosols over the Southern Baltic Sea: From Clean Marine Boundary Layer to Shipping Corridor Effect. Tellus B 2020, 72, 1695349. [Google Scholar] [CrossRef]
- Marmer, E.; Dentener, F.; Aardenne, J.V.; Cavalli, F.; Vignati, E.; Velchev, K.; Hjorth, J.; Boersma, F.; Vinken, G.; Mihalopoulos, N.; et al. What Can We Learn about Ship Emission Inventories from Measurements of Air Pollutants over the Mediterranean Sea? Atmos. Chem. Phys. 2009, 9, 6815–6831. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Bibi, S. Estimation of Shortwave Direct Aerosol Radiative Forcing at Four Locations on the Indo-Gangetic Plains: Model Results and Ground Measurement. Atmos. Environ. 2017, 163, 166–181. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Zhang, W.; Yu, J. Are the Temporal Variation and Spatial Variation of Ambient SO2 Concentrations Determined by Different Factors? J. Clean. Prod. 2017, 167, 824–836. [Google Scholar] [CrossRef]
- Patel, P.N.; Kumar, R. Dust Induced Changes in Ice Cloud and Cloud Radiative Forcing over a High Altitude Site. Aerosol Air Qual. Res. 2016, 16, 1820–1831. [Google Scholar] [CrossRef]
- Khoshsima, M.; Bidokhti, A.A.; Ahmadi-Givi, F. Variations of Aerosol Optical Depth and Angstrom Parameters at a Suburban Location in Iran during 2009–2010. J. Earth Syst. Sci. 2014, 123, 187–199. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Soni, V.K.; Singh, S.; Kanawade, V.P.; Singh, N.; Tiwari, S.; Attri, S.D. An Early South Asian Dust Storm during March 2012 and Its Impacts on Indian Himalayan Foothills: A Case Study. Sci. Total Environ. 2014, 493, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.R.; Yin, Y.; Sivakumar, V.; Kang, N.; Yu, X.; Diao, Y.; Adesina, A.J.; Reddy, R.R. Aerosol Climatology and Discrimination of Aerosol Types Retrieved from MODIS, MISR and OMI over Durban (29.88°S, 31.02°E), South Africa. Atmos. Environ. 2015, 117, 9–18. [Google Scholar] [CrossRef]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence That the Spectral Dependence of Light Absorption by Aerosols Is Affected by Organic Carbon. J. Geophys. Res. Atmos. 2004, 109, D21208. [Google Scholar] [CrossRef]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; DeCarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and Related Data as an Indicator of Aerosol Composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, H.; Wang, P.; Dai, W.; Zhang, T.; Zhao, Y.; Tian, J.; Zhang, W.; Han, Y.; Cao, J. Optical Source Apportionment and Radiative Effect of Light-Absorbing Carbonaceous Aerosols in a Tropical Marine Monsoon Climate Zone: The Importance of Ship Emissions. Atmos. Chem. Phys. 2020, 20, 15537–15549. [Google Scholar] [CrossRef]
- Andreae, M.O.; Gelencsér, A. Black Carbon or Brown Carbon? The Nature of Light-Absorbing Carbonaceous Aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef]
- Khatri, P.; Takamura, T.; Shimizu, A.; Sugimoto, N. Spectral Dependency of Aerosol Light-Absorption over the East China Sea Region. SOLA 2010, 6, 1–4. [Google Scholar] [CrossRef]
- Jung, J.; Lee, H.; Kim, Y.J.; Liu, X.; Zhang, Y.; Gu, J.; Fan, S. Aerosol Chemistry and the Effect of Aerosol Water Content on Visibility Impairment and Radiative Forcing in Guangzhou during the 2006 Pearl River Delta Campaign. J. Environ. Manag. 2009, 90, 3231–3244. [Google Scholar] [CrossRef]
- Shaheen, K.; Shah, Z.; Suo, H.; Liu, M.; Ma, L.; Alam, K.; Gul, A.; Cui, J.; Li, C.; Wang, Y.; et al. Aerosol Clustering in an Urban Environment of Beijing during (2005–2017). Atmos. Environ. 2019, 213, 534–547. [Google Scholar] [CrossRef]
- Ding, J.; Miyazaki, K.; van der A, R.J.; Mijling, B.; Kurokawa, J.; Cho, S.; Janssens-Maenhout, G.; Zhang, Q.; Liu, F.; Levelt, P.F. Intercomparison of NOx emission inventories over East Asia. Atmos. Chem. Phys. 2017, 17, 10125–10141. [Google Scholar] [CrossRef]
- Roy, C.; Rathod, S.D.; Ayantika, D.C. NOx -Induced Changes in Upper Tropospheric O3 During the Asian Summer Monsoon in Present-Day and Future Climate. Geophys. Res. Lett. 2023, 50, e2022GL101439. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, S.; Zhang, S.; Xue, R.; Zhu, J.; Zhou, B. MAX-DOAS Observation in the Midlatitude Marine Boundary Layer: Influences of Typhoon Forced Air Mass. J. Environ. Sci. 2022, 120, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Ghahremanloo, M.; Lops, Y.; Choi, Y.; Mousavinezhad, S. Impact of the COVID-19 Outbreak on Air Pollution Levels in East Asia. Sci. Total Environ. 2021, 754, 142226. [Google Scholar] [CrossRef]
- Garg, A.; Shukla, P.R.; Kapshe, M. The Sectoral Trends of Multigas Emissions Inventory of India. Atmos. Environ. 2006, 40, 4608–4620. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, C.; Mu, Y.; Cheng, Y.; Zhang, Y.; Liu, C.; Song, M.; Tian, D.; Liu, P.; Liu, J.; et al. An Important Missing Source of Atmospheric Carbonyl Sulfide: Domestic Coal Combustion: COS From Domestic Coal Combustion. Geophys. Res. Lett. 2016, 43, 8720–8727. [Google Scholar] [CrossRef]
- Conrad, R.; Seiler, W.; Bunse, G.; Giehl, H. Carbon Monoxide in Seawater (Atlantic Ocean). J. Geophys. Res. 1982, 87, 8839–8852. [Google Scholar] [CrossRef]
- Seiler, W.; Schmidt, U. Dissolved Nonconservative Gases in Seawater. Sea 1974, 5, 219–243. [Google Scholar]
- Chapman, D.; Tocher, R. Occurrence and Production of Carbon Monoxide in Some Brown Algae. Can. J. Bot. 2011, 44, 1438–1442. [Google Scholar] [CrossRef]
- Linnenbom, V.; Swinnerton, J.; Lamontagne, R. The Ocean as a Source for Atmospheric Carbon Monoxide. J. Geophys. Res. 1973, 78, 5333–5340. [Google Scholar] [CrossRef]
- Wang, W.-L.; Yang, G.-P.; Lu, X.-L. Carbon Monoxide Distribution and Microbial Consumption in the Southern Yellow Sea. Estuar. Coast. Shelf Sci. 2015, 163, 125–133. [Google Scholar] [CrossRef]
Location | Height | Feature | Time | Instrument | Citation |
---|---|---|---|---|---|
Qingdao | ~40 m | Suburb | Spring, 2020 | MAAP 3 | [53] |
Nanjing | 26 m a.s.l 1 | Suburb | Spring, 2018 | MAAP 4 | [54] |
Shanghai | ~20 m a.g.l 2 | Campus | Spring, 2017 | AE33 5 | [55] |
Ningbo | 10 m a.s.l | Suburb | Autumn, 2016 | AE31 6 | [56] |
Xiamen 7 | ~8 m | Suburb | Annual, 2014 | AE31 | [57] |
NWPO 8 | ---- | Cruise | Spring, 2015 | Thermal/Optical Carbon Analyzer | [29] |
Arctic Ocean | ---- | Cruise | Summer, 2016 | AE31 | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, G.; Chen, L.; Chen, K. Characteristics of Air Pollutant Distribution and Sources in the East China Sea and the Yellow Sea in Spring Based on Multiple Observation Methods. Remote Sens. 2023, 15, 3262. https://doi.org/10.3390/rs15133262
Wang Y, Xu G, Chen L, Chen K. Characteristics of Air Pollutant Distribution and Sources in the East China Sea and the Yellow Sea in Spring Based on Multiple Observation Methods. Remote Sensing. 2023; 15(13):3262. https://doi.org/10.3390/rs15133262
Chicago/Turabian StyleWang, Yucheng, Guojie Xu, Liqi Chen, and Kui Chen. 2023. "Characteristics of Air Pollutant Distribution and Sources in the East China Sea and the Yellow Sea in Spring Based on Multiple Observation Methods" Remote Sensing 15, no. 13: 3262. https://doi.org/10.3390/rs15133262
APA StyleWang, Y., Xu, G., Chen, L., & Chen, K. (2023). Characteristics of Air Pollutant Distribution and Sources in the East China Sea and the Yellow Sea in Spring Based on Multiple Observation Methods. Remote Sensing, 15(13), 3262. https://doi.org/10.3390/rs15133262