Multilayer Densities of the Crust and Upper Mantle in the South China Sea Using Gravity Multiscale Analysis
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Bouguer Gravity Anomaly
3.2. Decomposed Bouguer Gravity Anomaly
3.3. Stratified Density Inversion Results
3.4. Profile Density
4. Discussion
4.1. Internal Density Distribution in the SCS
4.2. Comparison with the Velocity Model in the SCS
4.3. Some New Discoveries
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, J.Y.; Lei, C. Tectonic stratigraphic framework of Yinggehai-Qiongdongnan Basins and its implication for tectonic province division in South China Sea. Chin. J. Geophys. 2011, 54, 3303–3314. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Song, H.B.; Yang, Z.W.; Song, Y.; Tian, L.H. Tectonic and thermal evolution modeling for the marginal basins of the southern South China Sea. Chin. J. Geophys. 2014, 57, 1543–1553. [Google Scholar]
- Ben-Avraham, Z.; Emery, K.O. Structural framework of Sunda shelf. AAPG Bull. 1973, 57, 2323–2366. [Google Scholar]
- Hilde, T.W.C.; Uyeda, S.; Kroenke, L. Evolution of the western Pacific and its margin. Tectonophysics 1977, 38, 145–165. [Google Scholar] [CrossRef]
- Li, T.L.; Shi, H.Y.; Guo, Z.H.; Zhang, G.C.; Zhang, R.Z.; Chen, H.B. Research on deep structure of the South China Sea based on satellite gravity and magnetic data. Chin. J. Geophys. 2018, 61, 4216–4230. [Google Scholar]
- Ludwig, W.J.; Kumar, N.; Houtz, R.E. Profiler-sonobuoy measurements in the South China Sea basin. J. Geophys. Res. Solid Earth 1979, 84, 3505–3518. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, D.; Zhong, Z.; Zeng, Z.; Wu, S. Experimental evidence for the dynamics of the formation of the Yinggehai basin, NW South China Sea. Tectonophysics 2003, 372, 41–58. [Google Scholar] [CrossRef]
- Wu, Z.L.; Li, J.B.; Ruan, A.G.; Lou, H.; Ding, W.W.; Niu, X.W.; Li, X.B. Crustal structure of the northwestern sub-basin, South China Sea: Results from a wide-angle seismic experiment. Sci. China Earth Sci. 2012, 55, 159–172. [Google Scholar] [CrossRef]
- Ruan, A.; Wei, X.; Niu, X.; Zhang, J.; Dong, C.; Wu, Z.; Wang, X. Crustal structure and fracture zone in the Central Basin of the South China Sea from wide angle seismic experiments using OBS. Tectonophysics 2016, 688, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Braitenberg, C.; Wienecke, S.; Wang, Y. Basement structures from satellite-derived gravity field: South China Sea ridge. J. Geophys. Res. Solid Earth 2006, 111, B05407. [Google Scholar] [CrossRef]
- Hao, T.Y.; Huang, S.; Xu, Y.; Li, Z.W.; Xu, Y.; Lei, S.M.; Yang, J.Y. Comprehensive geophysical research on the deep structure of Northeastern South China Sea. Chin. J. Geophys. 2008, 51, 1168–1180. [Google Scholar] [CrossRef]
- Guan, D.; Ke, X.; Wang, Y. Basement structures of East and South China Seas and adjacent regions from gravity inversion. J. Asian Earth Sci. 2016, 117, 242–255. [Google Scholar] [CrossRef]
- Gao, J.; Wu, S.; McIntosh, K.; Mi, L.; Liu, Z.; Spence, G. Crustal structure and extension mode in the northwestern margin of the South China Sea. Geochem. Geophys. Geosystems 2016, 17, 2143–2167. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.C.; Gao, J.Y.; Ding, W.W.; Shen, Z.Y.; Zhang, T.; Yang, C.G. The Moho depth of the South China Sea basin from three-dimensional gravity inversion with constraint points and its characteristics. Chin. J. Geophys. 2017, 60, 2599–2613. [Google Scholar]
- Sun, Z.; Ouyang, M.; Guan, B. Bathymetry predicting using the altimetry gravity anomalies in South China Sea. Geod. Geodyn. 2018, 9, 156–161. [Google Scholar] [CrossRef]
- Luo, X.G.; Wang, W.Y.; Zhang, G.C.; Zhao, Z.G.; Liu, J.L.; Xie, X.J.; Qiu, Z.Y.; Feng, X.L.; Ji, X.L.; Wang, D.D. Study on distribution features of faults based on gravity data in the South China Sea and its adjacent areas. Chin. J. Geophys. 2018, 61, 4255–4268. [Google Scholar]
- Zhang, J.; Yang, G.; Tan, H.; Wu, G.; Wang, J. Mapping the Moho depth and ocean-continent transition in the South China Sea using gravity inversion. J. Asian Earth Sci. 2021, 218, 104864. [Google Scholar] [CrossRef]
- Ji, F.; Li, F.; Zhang, Q.; Gao, J.Y.; Hao, W.F.; Li, Y.D.; Guan, Q.S.; Lin, X. Crustal density structure of the Antarctic continent from constrained 3-D gravity inversion. Chin. J. Geophys. 2019, 62, 849–863. [Google Scholar]
- Feng, J.; Meng, X.H.; Chen, Z.X.; Shi, L.; Wu, Y.; Fan, Z.J. The investigation and application of three-dimensional density interface. Chin. J. Geophys. 2014, 57, 287–294. [Google Scholar]
- Bi, B.T.; Hu, X.Y.; Li, L.Q.; Zhang, H.L.; Liu, S.; Cai, J.C. Multi-scale analysis to the gravity field of the northeastern Tibetan plateau and its geodynamic implications. Chin. J. Geophys. 2016, 59, 543–555. [Google Scholar]
- Xu, C.; Wang, H.; Luo, Z.; Liu, H.; Liu, X. Insight into urban faults by wavelet multiscale analysis and modeling of gravity data in Shenzhen, China. J. Earth Sci. 2018, 29, 1340–1348. [Google Scholar] [CrossRef]
- Hirt, C.; Rexer, M. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models–Available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Zingerle, P.; Pail, R.; Gruber, T.; Oikonomidou, X. The combined global gravity field model XGM2019e. J. Geod. 2020, 94, 66. [Google Scholar] [CrossRef]
- Straume, E.O.; Gaina, C.; Medvedev, S.; Gohl, K.; Whittaker, J.M.; Abdul Fattah, R.; Doornenbal, J.C.; Hopper, J.R. GlobSed: Updated total sediment thickness in the world’s oceans. Geochem. Geophys. Geosyst. 2019, 20, 1756–1772. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1. 0—A 1-degree global model of Earth’s crust. In Geophysical Research Abstracts; EGU General Assembly: Vienna, Austria, 2013; Volume 15, p. 2658. [Google Scholar]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Spector, A.; Grant, F.S. Statistical models for interpreting aeromagnetic data. Geophysics 1970, 35, 293–302. [Google Scholar] [CrossRef]
- Heck, B.; Seitz, K. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geod. 2007, 81, 121–136. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.Y. Solotion of Ill-Posed Problems; John Wiley and Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Hansen, P.C.; O’Leary, D.P. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 1993, 14, 1487–1503. [Google Scholar] [CrossRef]
- Parker, R.L. The rapid calculation of potential anomalies. Geophys. J. Int. 1973, 31, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.L.; Wang, W.Y.; Zhao, Z.G.; Feng, X.L.; Zhang, G.C.; Luo, X.G.; Yao, P.; Ji, X.L. Characteristics of deep structure in the South China Sea and geological implications: Insights from gravity and magnetic inversion. Chin. J. Geophys. 2018, 61, 4231–4241. [Google Scholar]
- Xie, X.N.; Ren, J.Y.; Wang, Z.F.; Li, X.S.; Lei, C. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading. Earth Sci. Front. 2015, 22, 77–87. [Google Scholar]
- Xu, C.; Liu, Z.; Luo, Z.; Wu, Y.; Wang, H. Moho topography of the Tibetan Plateau using multiscale gravity analysis and its tectonic implications. J. Asian Earth Sci. 2017, 138, 378–386. [Google Scholar] [CrossRef]
- Rangin, C. The Sulu Sea, a back-arc basin setting within a Neogene collision zone. Tectonophysics 1989, 161, 119–141. [Google Scholar] [CrossRef]
- Rangin, C.; Silver, E.A. Neogene tectonic evolution of the Celebes-Sulu basins: New insights from Leg 124 drilling. Proc. Ocean Drill. Program Sci. Results 1991, 124, 51–63. [Google Scholar]
- Wang, S.; Zhang, G. Geochemical constraints on mantle source nature and recycling of subducted sediments in the Sulu Sea. Geosyst. Geoenviron. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Liu, W.N.; Li, C.F.; Li, J.; Fairhead, D.; Zhou, Z. Deep structures of the Palawan and Sulu Sea and their implications for opening of the South China Sea. Mar. Pet. Geol. 2014, 58, 721–735. [Google Scholar] [CrossRef]
- Zhu, M.; Graham, S.; McHargue, T. The red river fault zone in the Yinggehai Basin, South China Sea. Tectonophysics 2009, 476, 397–417. [Google Scholar] [CrossRef]
- Mazur, S.; Green, C.; Stewart, M.G.; Whittaker, J.M.; Williams, S.; Bouatmani, R. Displacement along the Red River Fault constrained by extension estimates and plate reconstructions. Tectonics 2012, 31, TC5008. [Google Scholar] [CrossRef]
- Gong, Y.; Pease, V.; Wang, H.; Gan, H.; Liu, E.; Ma, Q.; Zhao, S.; He, J. Insights into evolution of a rift basin: Provenance of the middle Eocene-lower Oligocene strata of the Beibuwan Basin, South China Sea from detrital zircon. Sediment. Geol. 2021, 419, 105908. [Google Scholar] [CrossRef]
- Tapponnier, P.; Peltzer, G.; Le Dain, A.Y.; Armijo, R.; Cobbold, P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 1982, 10, 611–616. [Google Scholar] [CrossRef]
- Yan, Q.; Shi, X.; Castillo, P.R. The late Mesozoic–Cenozoic tectonic evolution of the South China Sea: A petrologic perspective. J. Asian Earth Sci. 2014, 85, 178–201. [Google Scholar] [CrossRef] [Green Version]
- Last, B.J.; Kubik, K. Compact gravity inversion. Geophysics 1983, 48, 713–721. [Google Scholar] [CrossRef]
- Yu, H.; Xu, C.; Wu, Y.; Li, J.; Jian, G.; Xu, M. Fine structure of the lunar crust and upper mantle in the mare serenitatis derived from gravity multi-scale analysis. Front. Astron. Space Sci. 2023, 10, 1109714. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Chen, H. An improved method to Moho depth recovery from gravity disturbance and its application in the South China Sea. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024536. [Google Scholar] [CrossRef]
- Hung, T.D.; Yang, T.; Le, B.M.; Yu, Y.; Xue, M.; Liu, B.; Liu, C.; Wang, J.; Pan, M.; Huong, P.T.; et al. Crustal structure across the extinct mid-ocean ridge in South China sea from OBS receiver functions: Insights into the spreading rate and magma supply prior to the Ridge cessation. Geophys. Res. Lett. 2021, 48, e2020GL089755. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.; Luo, Z.; Ojo, A.O.; Xie, J.; Bao, F.; Wang, L.; Tu, G. Crust and upper mantle structure of the South China Sea and adjacent areas from the joint inversion of ambient noise and earthquake surface wave dispersions. Geochem. Geophys. Geosystems 2021, 22, e2020GC009356. [Google Scholar] [CrossRef]
- Hao, T.; Liu, J.; Song, H.; Xu, Y. Geophysical Evidences of Some Important Faults in South China and Adjacent Marginal Seas Region. Prog. Geophys. 2002, 17, 13–23. [Google Scholar]
- Yao, B.; Zeng, W.; Chen, Y.; Zhang, X.; Hayes, D.E.; Diebold, J.; Buhl, P.; Spangler, S. Xisha trough of South China Sea–An ancient suture. Mar. Geol. Quat. Geol. 1994, 14, 1–9. [Google Scholar]
- Sun, Z.; Zhong, Z.; Zhou, D.; Lin, X.; Wu, S. Deformation Mechanism of Red River Fault Zone during Cenozoic and Experimental Evidences related to Yinggehai Basin Formation. J. Trop. Oceanogr. 2003, 22, 1–9. [Google Scholar]
Layer | Range of Depth (km) | Average Depth (km) | Thickness (km) |
---|---|---|---|
D1 | 0.0~2.0 | 1.0 | 2.0 |
D2 | 2.0~11.6 | 6.8 | 9.6 |
D3 | 11.6~17.4 | 14.5 | 5.8 |
D4 | 17.4~23.8 | 20.6 | 6.4 |
D5 | 23.8~42.4 | 33.1 | 18.6 |
D6 | 42.4~71.2 | 56.8 | 28.8 |
D7 | 71.2~106.8 | 89.0 | 35.6 |
D8 | 106.8~128.8 | 117.8 | 22.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Xu, C.; Chen, H.; Chai, Y.; Qin, P.; Wang, G.; Zhang, H.; Xu, M.; Xing, C.; Wang, H. Multilayer Densities of the Crust and Upper Mantle in the South China Sea Using Gravity Multiscale Analysis. Remote Sens. 2023, 15, 3274. https://doi.org/10.3390/rs15133274
Yu H, Xu C, Chen H, Chai Y, Qin P, Wang G, Zhang H, Xu M, Xing C, Wang H. Multilayer Densities of the Crust and Upper Mantle in the South China Sea Using Gravity Multiscale Analysis. Remote Sensing. 2023; 15(13):3274. https://doi.org/10.3390/rs15133274
Chicago/Turabian StyleYu, Hangtao, Chuang Xu, Haopeng Chen, Yi Chai, Pengbo Qin, Gongxiang Wang, Hui Zhang, Ming Xu, Congcong Xing, and Hao Wang. 2023. "Multilayer Densities of the Crust and Upper Mantle in the South China Sea Using Gravity Multiscale Analysis" Remote Sensing 15, no. 13: 3274. https://doi.org/10.3390/rs15133274
APA StyleYu, H., Xu, C., Chen, H., Chai, Y., Qin, P., Wang, G., Zhang, H., Xu, M., Xing, C., & Wang, H. (2023). Multilayer Densities of the Crust and Upper Mantle in the South China Sea Using Gravity Multiscale Analysis. Remote Sensing, 15(13), 3274. https://doi.org/10.3390/rs15133274