Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment
Abstract
:1. Introduction
2. Experimental Methods
2.1. Experimental Setup
2.2. Sample Preparation and Spectra Collection
2.3. Data Preprocessing
2.3.1. Dark Subtraction
2.3.2. Wavelength Calibration and Drift Correction
- We took the data of the Ti element from the NIST database and determined the wavelength point values within the 220–880 nm range where prominent characteristic peaks of Ti existed. These values constituted a wavelength value series (WVS). The WVS of the NIST database is defined as the standard WVS here.
- There was a LIBS spectrum of the specially made Ti-alloy sample (mentioned in Section 2.2) acquired in our previous experiment that was collected by the MarSCoDe laboratory model in a Mars-simulated environment. This spectrum is called the reference spectrum here. We determined the wavelength point values where prominent characteristic peaks of Ti existed in the reference spectrum. For the three spectral channels, 61, 44, and 6 points were chosen, respectively. In the following, we took Channel 1 as the example to demonstrate the calculation of ∆p. The WVS of Channel 1 is defined as the reference WVS-C1 (containing 61 points).
- We selected 61 points within the 240–340 nm range from the standard WVS; these points are called the standard WVS-C1. Note that the chosen 61 wavelength values should be approximately the same as the reference WVS-C1. The drift amount between the standard WVS-C1 and the reference WVS-C1 (both containing 61 points) was defined as ∆p1, where ∆p1 should be within a certain range; e.g., 7–8 pixels for Channel 1.
- We calculated the root mean square error (RMSE) between the reference WVS-C1 and the standard WVS-C1, set a certain shift range, and shifted the reference WVS-C1 with a step of 0.01 pixel within the specified range (note that wavelength values could be transformed into pixel number values via the obtained wavelength calibration model). After each shift, an updated reference WVS-C1 was generated. For each shifting step, we calculated the RMSE and recorded it. After completing the shift, we determined the minimum RMSE and the corresponding shift value. This shift value was regarded as the optimal drift amount ∆p1 for Channel 1.
- For an arbitrary target sample in the current experiment, the drift amount of its spectrum was considered to be identical to that of the spectrum collected on the Ti-alloy sample in the same collection batch (the Ti-alloy sample was always on the stage in all collection batches, as described in Section 2.2).
- We selected 61 points within the 240–340 nm range from the Ti-alloy spectrum in the correct batch in the current experiment, and these points were called the arbitrary WVS-C1. The drift amount between the arbitrary WVS-C1 and the reference WVS-C1 (both containing 61 points) was defined as ∆p2, where ∆p2 should be less than a certain threshold.
- We calculated the RMSE between the arbitrary WVS-C1 and the reference WVS-C1, set a certain shift range, and shifted the arbitrary WVS-C1 with a step of 0.01 pixel within the specified range. For each shifting step, we calculated the RMSE and recorded it. After completing the shift, we determined the minimum RMSE and the corresponding shift value. This shift value was regarded as the optimal drift amount ∆p2 for Channel 1.
- The total drift amount of Channel 1 for an arbitrary spectrum was then calculated as ∆p = ∆p1 + ∆p2.
- Similar to the above procedures, we calculated the total drift amount of Channel 2 and Channel 3. According the drift amount of each channel, we completed the wavelength drift correction.
2.3.3. Ineffective Pixel Screening and Channel Splicing
2.3.4. Intensity Normalization
2.3.5. Baseline Removal
2.3.6. Mg-Peak Wavelength Correction
2.3.7. Mg-Peak Feature Engineering
2.3.8. Concentration Range Reduction
2.4. Analytical Approaches
3. Results and Discussion
3.1. Results
3.1.1. Analysis of Original Spectra Set
3.1.2. Analysis of Preprocessed Spectra Sets
3.1.3. Analysis of Concentration Range Reduction Spectra Set
3.2. Discussion
3.2.1. The BPNN Parameters
3.2.2. The Overfitting Check
3.2.3. Some other Chemometrics Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.; Liu, Y.; Zhang, C.; Wu, Y.; Zhang, F.; Du, J.; Liu, Z.; Xing, Y.; Xu, R.; He, Z.; et al. Geological Characteristics of China’s Tianwen-1 Landing Site at Utopia Planitia, Mars. Icarus 2021, 370, 114657. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Yan, Z.; Li, L.; Zhang, Z.; Kuang, Y.; Jiang, H.; Yu, H.; Yang, F.; Liu, C.; et al. The MarSCoDe Instrument Suite on the Mars Rover of China’s Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 64. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, Y.; Bai, Y.; Wang, L.; Jia, Y.; Shen, W.; Fan, Y.; Liu, Y.; Wang, C.; Zhang, A.; et al. Scientific Objectives and Payloads of Tianwen-1, China’s First Mars Exploration Mission. Adv. Space Res. 2021, 67, 812–823. [Google Scholar] [CrossRef]
- Khajehzadeh, N.; Haavisto, O.; Koresaar, L. On-Stream and Quantitative Mineral Identification of Tailing Slurries Using LIBS Technique. Miner. Eng. 2016, 98, 101–109. [Google Scholar] [CrossRef]
- Harmon, R.S.; Remus, J.; McMillan, N.J.; McManus, C.; Collins, L.; Gottfried, J.L.; DeLucia, F.C.; Miziolek, A.W. LIBS Analysis of Geomaterials: Geochemical Fingerprinting for the Rapid Analysis and Discrimination of Minerals. Appl. Geochem. 2009, 24, 1125–1141. [Google Scholar] [CrossRef]
- Sobron, P.; Wang, A.; Sobron, F. Extraction of Compositional and Hydration Information of Sulfates from Laser-Induced Plasma Spectra Recorded under Mars Atmospheric Conditions–Implications for ChemCam Investigations on Curiosity Rover. Spectrochim. Acta Part B At. Spectrosc. 2012, 68, 1–16. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Barraclough, B.; Saccoccio, M.; Barkley, W.C.; Bell, J.F.; Bender, S.; Bernardin, J.; Blaney, D.; Blank, J.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Sci. Rev. 2012, 170, 167–227. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.M.; Deleuze, M.; Rull, F.; et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Sci. Rev. 2021, 217, 64. [Google Scholar] [CrossRef]
- McLennan, S.M.; Anderson, R.B.; Bell, J.F.; Bridges, J.C.; Calef, F.; Campbell, J.L.; Clark, B.C.; Clegg, S.; Conrad, P.; Cousin, A.; et al. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1244734. [Google Scholar] [CrossRef] [Green Version]
- Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; et al. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1243480. [Google Scholar] [CrossRef]
- Wiens, R.C.; Udry, A.; Beyssac, O.; Quantin-Nataf, C.; Mangold, N.; Cousin, A.; Mandon, L.; Bosak, T.; Forni, O.; Mclennan, S.M.; et al. Compositionally and Density Stratified Igneous Terrain in Jezero Crater, Mars. Sci. Adv. 2022, 8, eabo3399. [Google Scholar] [CrossRef]
- Liu, C.; Ling, Z.; Wu, Z.; Zhang, J.; Chen, J.; Fu, X.; Qiao, L.; Liu, P.; Li, B.; Zhang, L.; et al. Aqueous Alteration of the Vastitas Borealis Formation at the Tianwen-1 Landing Site. Commun. Earth Environ. 2022, 3, 280. [Google Scholar] [CrossRef]
- Lepore, K.H.; Fassett, C.I.; Breves, E.A.; Byrne, S.; Giguere, S.; Boucher, T.; Rhodes, J.M.; Vollinger, M.; Anderson, C.H.; Murray, R.W.; et al. Matrix Effects in Quantitative Analysis of Laser-Induced Breakdown Spectroscopy (LIBS) of Rock Powders Doped with Cr, Mn, Ni, Zn, and Co. Appl. Spectrosc. 2017, 71, 600–626. [Google Scholar] [CrossRef]
- Yang, Y.; Hao, X.; Ren, L. Correction of Self-Absorption Effect in Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) by Considering Plasma Temperature and Electron Density. Optik 2020, 208, 163702. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Lin, Z.; Gong, S.; Xie, C.; Chang, L.; Yang, L.; Li, P. Effects of Experimental Parameters on Elemental Analysis of Coal by Laser-Induced Breakdown Spectroscopy. Opt. Laser Technol. 2009, 41, 907–913. [Google Scholar] [CrossRef]
- Ewusi-Annan, E.; Delapp, D.M.; Wiens, R.C.; Melikechi, N. Automatic Preprocessing of Laser-Induced Breakdown Spectra Using Partial Least Squares Regression and Feed-Forward Artificial Neural Network: Applications to Earth and Mars Data. Spectrochim. Acta Part B At. Spectrosc. 2020, 171, 105930. [Google Scholar] [CrossRef]
- Pořízka, P.; Klus, J.; Képeš, E.; Prochazka, D.; Hahn, D.W.; Kaiser, J. On the Utilization of Principal Component Analysis in Laser-Induced Breakdown Spectroscopy Data Analysis, a Review. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 65–82. [Google Scholar] [CrossRef]
- Li, L.N.; Liu, X.F.; Yang, F.; Xu, W.M.; Wang, J.Y.; Shu, R. A Review of Artificial Neural Network Based Chemometrics Applied in Laser-Induced Breakdown Spectroscopy Analysis. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106183. [Google Scholar] [CrossRef]
- Li, L.N.; Liu, X.F.; Xu, W.M.; Wang, J.Y.; Shu, R. A Laser-Induced Breakdown Spectroscopy Multi-Component Quantitative Analytical Method Based on a Deep Convolutional Neural Network. Spectrochim. Acta Part B At. Spectrosc. 2020, 169, 105850. [Google Scholar] [CrossRef]
- Anderson, R.B.; Forni, O.; Cousin, A.; Wiens, R.C.; Clegg, S.M.; Frydenvang, J.; Gabriel, T.S.J.; Ollila, A.; Schröder, S.; Beyssac, O.; et al. Post-Landing Major Element Quantification Using SuperCam Laser Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2022, 188, 106347. [Google Scholar] [CrossRef]
- Gasda, P.J.; Anderson, R.B.; Cousin, A.; Forni, O.; Clegg, S.M.; Ollila, A.; Lanza, N.; Frydenvang, J.; Lamm, S.; Wiens, R.C.; et al. Quantification of Manganese for ChemCam Mars and Laboratory Spectra Using a Multivariate Model. Spectrochim. Acta Part B At. Spectrosc. 2021, 181, 106223. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, T.; Xia, D.; Zhang, L. Quantitative Analysis Research of ChemCam-LIBS Spectral Data of Curiosity Rover. Infrared Laser Eng. 2022, 51, 9. [Google Scholar]
- Cousin, A.; Forni, O.; Maurice, S.; Gasnault, O.; Fabre, C.; Sautter, V.; Wiens, R.C.; Mazoyer, J. Laser Induced Breakdown Spectroscopy Library for the Martian Environment. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 805–814. [Google Scholar] [CrossRef]
- Sears, D.W.G.; Benoit, P.H.; Mckeever, S.W.S.; Banerjee, D.; Kral, T.; Stites, W.; Roe, L.; Jansma, P.; Mattioli, G. Investigation of Biological, Chemical and Physical Processes on and in Planetary Surfaces by Laboratory Simulation. Planet. Space Sci. 2002, 50, 821–828. [Google Scholar] [CrossRef]
- Cui, Z.; Jia, L.; Li, L.; Liu, X.; Xu, W.; Shu, R.; Xu, X. A Laser-Induced Breakdown Spectroscopy Experiment Platform for High-Degree Simulation of MarSCoDe In Situ Detection on Mars. Remote Sens. 2022, 14, 1954. [Google Scholar] [CrossRef]
- Ralchenko, Y.; Kramida, A. Development of NIST Atomic Databases and Online Tools. Atoms 2020, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Liu, X.; Xu, W.; Xu, X.; Li, L.; Cui, Z.; Liu, Z.; Shu, R. Initial Drift Correction and Spectral Calibration of MarSCoDe Laser-Induced Breakdown Spectroscopy on the Zhurong Rover. Remote Sens. 2022, 14, 5964. [Google Scholar] [CrossRef]
- Jin, G.; Wu, Z.; Ling, Z.; Liu, C.; Liu, W.; Chen, W.; Zhang, L. A New Spectral Transformation Approach and Quantitative Analysis for MarSCoDe Laser-Induced Breakdown Spectroscopy (LIBS) Data. Remote Sens. 2022, 14, 3960. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Stand-off distance | 1.6–7.0 m |
Laser type | Nd:YAG |
Pulse width | 4 ns |
Pulse energy | 9 mJ |
Pulse repetition rate | 1–3 Hz |
Laser wavelength | 1064 nm |
Entire spectral range | 240–850 nm |
SSI of each channel | 0.1 nm at 240–340 nm |
0.2 nm at 340–540 nm | |
0.3 nm at 540–850 nm |
No. | Material | Reference ID | MgO Content |
---|---|---|---|
1 | Andesite | NA | 0.43 |
2 | Rhyodacite | NA | 0.057 |
3 | Trachyte | NA | 2.96 |
4 | Olivine basalt | NA | 10.05 |
5 | Andesite | GBW07104(GSR-2) | 1.72 |
6 | Basalt variant type-I | GBW07105(GSR-3) | 7.77 |
7 | Kaolin | GBW03121a | 0.069 |
8 | Soft clay | GBW03115 | 0.3 |
9 | Copper rich ore | GBW07164(GSO-3) | 2.33 |
10 | Lead ore type-I | GBW07235 | 1.62 |
11 | Carbonate rock | GBW07127 | 6.76 |
12 | Dolomite | GBW07217a | 20.37 |
13 | Yellow-red soil | GBW07405(GSS-5) | 0.61 |
14 | Latosol | GBW07407(GSS-7) | 0.26 |
15 | Stream sediment type-I | GBW07309(GSD-9) | 2.39 |
16 | Stream sediment type-VII | GBW07311(GSD-11) | 0.62 |
17 | Granitic gneiss | GBW07121(GSR-14) | 1.63 |
18 | Clay | GBW03101a | 0.46 |
19 | Shale type-I | GBW03104 | 0.67 |
20 | Argillaceous limestone | GBW07108(GSR-6) | 5.19 |
21 | Polymetallic ore | GBW07163(GSO-2) | 1.39 |
22 | Floodplain sediment | GBW07390(GSS-34) | 2.66 |
23 | Shale type-II | GBW07107(GSR-5) | 2.01 |
24 | Nickel ore | GBW07146 | 14.56 |
25 | Polymetallic lean ore | GBW07162(GSO-1) | 1.55 |
26 | Lead ore type-II | GBW07236 | 2.06 |
27 | Molybdenum ore | GBW07239 | 1.83 |
28 | Stream sediment type-III | GBW07305a(GSD5a) | 1.29 |
29 | Stream sediment type-IV | GBW07307a(GSD7a) | 2.5 |
30 | Stream sediment type-V | GBW07308a(GSD8a) | 0.47 |
31 | Saline-alkali soil type-I | GBW07447(GSS-18) | 2.58 |
32 | Sierozem | GBW07450(GSS-21) | 2.04 |
33 | Quartz sandstone | GBW07106(GSR-4) | 0.082 |
34 | Saline-alkali soil type-II | GBW07449(GSS-20) | 2.98 |
35 | Stream sediment type-II | GBW07377(GSD-26) | 1.73 |
36 | Lead–zinc rich ore | GBW07165(GSO-4) | 0.59 |
37 | Granite | GBW07103(GSR-1) | 0.42 |
38 | Siliceous sandstone | GBW03112 | 0.066 |
39 | Stream sediment type-VI | GBW07310(GSD10) | 0.12 |
Sample Quantity | Average | Standard Deviation | Minimum | Median | Maximum | |
---|---|---|---|---|---|---|
Sample Set 1 | 39 | 2.75 | 4.08 | 0.057 | 1.63 | 20.37 |
Sample Set 2 | 29 | 1.46 | 0.89 | 0.12 | 1.62 | 2.98 |
Original Spectra | Intensity Normalization | Baseline Removal | Mg-Peak Wavelength Correction | Mg-Peak Feature Engineering | Concentration Range Reduction | |
---|---|---|---|---|---|---|
Maximum | 0.0896/0.0263 | 0.0800/0.0387 | 0.1426/0.0263 | 0.0853/0.0267 | 0.1238/0.0331 | 0.0271/0.0125 |
Minimum | 0.0010/0.0054 | 0.0008/0.0054 | 0.0008/0.0064 | 0.0007/0.0056 | 0.0024/0.0060 | 0.0011/0.0040 |
Average | 0.0100/0.0100 | 0.0105/0.0135 | 0.0166/0.0103 | 0.0100/0.0106 | 0.0128/0.0121 | 0.0065/0.0064 |
Median | 0.0045/0.0089 | 0.0047/0.0107 | 0.0078/0.0097 | 0.0052/0.0091 | 0.0068/0.0104 | 0.0048/0.0062 |
Sample No. | Original Spectra | Intensity Normalization | Baseline Removal | Mg-Peak Wavelength Correction | Mg-Peak Feature Engineering |
---|---|---|---|---|---|
1 | 0.0025/0.0086 | 0.0043/0.0096 | 0.0033/0.0101 | 0.0012/0.0102 | 0.0086/0.0094 |
2 | 0.0012/0.0132 | 0.0027/0.0054 | 0.0014/0.0074 | 0.0009/0.0083 | 0.0132/0.009 |
3 | 0.0107/0.0087 | 0.012/0.0073 | 0.0109/0.0075 | 0.0083/0.0074 | 0.0087/0.0232 |
4 | 0.0605/0.0106 | 0.0186/0.0257 | 0.0258/0.0125 | 0.0216/0.0108 | 0.0106/0.0108 |
5 | 0.0053/0.0116 | 0.0065/0.0108 | 0.0078/0.0121 | 0.0059/0.0126 | 0.0116/0.0177 |
6 | 0.0206/0.0166 | 0.0483/0.0213 | 0.0261/0.016 | 0.0185/0.0158 | 0.0166/0.0145 |
7 | 0.0025/0.0101 | 0.0018/0.0076 | 0.0031/0.0076 | 0.0023/0.0097 | 0.0101/0.0081 |
8 | 0.0024/0.0061 | 0.006/0.0092 | 0.0054/0.0064 | 0.0016/0.0073 | 0.0061/0.0079 |
9 | 0.007/0.0068 | 0.0015/0.0127 | 0.0074/0.0064 | 0.0036/0.0076 | 0.0068/0.0179 |
10 | 0.0035/0.0078 | 0.0053/0.0176 | 0.004/0.0097 | 0.0065/0.008 | 0.0078/0.0169 |
11 | 0.0111/0.0114 | 0.0074/0.0097 | 0.0123/0.0132 | 0.0179/0.0153 | 0.0114/0.0089 |
12 | 0.0211/0.012 | 0.0296/0.0387 | 0.1056/0.0162 | 0.0481/0.0178 | 0.012/0.0311 |
13 | 0.003/0.0065 | 0.0018/0.006 | 0.0018/0.0087 | 0.001/0.0066 | 0.0065/0.006 |
14 | 0.0018/0.0084 | 0.0047/0.0107 | 0.0023/0.0099 | 0.0007/0.0088 | 0.0084/0.0069 |
15 | 0.006/0.0106 | 0.0037/0.0103 | 0.0072/0.0117 | 0.0054/0.0109 | 0.0106/0.0119 |
16 | 0.001/0.0068 | 0.0013/0.0066 | 0.0017/0.0079 | 0.0015/0.0072 | 0.0068/0.0106 |
17 | 0.0074/0.0116 | 0.0074/0.0098 | 0.0073/0.011 | 0.008/0.0113 | 0.0116/0.0124 |
18 | 0.0021/0.0084 | 0.0026/0.0131 | 0.0018/0.0097 | 0.0018/0.0086 | 0.0084/0.0077 |
19 | 0.0014/0.0076 | 0.0022/0.007 | 0.0045/0.008 | 0.0013/0.0075 | 0.0076/0.0075 |
20 | 0.0089/0.0103 | 0.0058/0.0177 | 0.0277/0.0089 | 0.0121/0.0137 | 0.0103/0.0097 |
21 | 0.0045/0.0072 | 0.0046/0.011 | 0.0054/0.0088 | 0.0113/0.0071 | 0.0072/0.0103 |
22 | 0.0057/0.0101 | 0.0082/0.0193 | 0.0067/0.0096 | 0.0061/0.0091 | 0.0101/0.0135 |
23 | 0.0037/0.0116 | 0.0656/0.0367 | 0.0095/0.0106 | 0.004/0.0097 | 0.0116/0.0138 |
24 | 0.0896/0.0263 | 0.08/0.0328 | 0.0916/0.0263 | 0.0853/0.0267 | 0.0263/0.0331 |
25 | 0.0041/0.0089 | 0.0037/0.0113 | 0.0061/0.0107 | 0.003/0.0089 | 0.0089/0.0107 |
26 | 0.0086/0.0078 | 0.0133/0.0251 | 0.0212/0.0109 | 0.0078/0.0091 | 0.0078/0.0075 |
27 | 0.0051/0.0089 | 0.0031/0.0203 | 0.0049/0.0086 | 0.0052/0.0076 | 0.0089/0.0134 |
28 | 0.0029/0.0091 | 0.0043/0.0075 | 0.0041/0.0083 | 0.0025/0.0092 | 0.0091/0.0104 |
29 | 0.0069/0.0075 | 0.0088/0.0085 | 0.0082/0.0101 | 0.0075/0.0074 | 0.0075/0.011 |
30 | 0.0015/0.0088 | 0.0017/0.0072 | 0.0045/0.0099 | 0.0015/0.0093 | 0.0088/0.0064 |
31 | 0.0078/0.0102 | 0.0095/0.0125 | 0.012/0.0098 | 0.0082/0.0092 | 0.0102/0.0127 |
32 | 0.0079/0.0068 | 0.0045/0.0135 | 0.0106/0.0071 | 0.0069/0.0056 | 0.0068/0.0123 |
33 | 0.0023/0.0078 | 0.0021/0.0078 | 0.003/0.0077 | 0.0024/0.0076 | 0.0078/0.008 |
34 | 0.043/0.0129 | 0.0086/0.0097 | 0.1426/0.0135 | 0.0538/0.0136 | 0.0129/0.0167 |
35 | 0.008/0.0054 | 0.0074/0.0092 | 0.0078/0.0074 | 0.0086/0.0069 | 0.0054/0.0084 |
36 | 0.0029/0.0168 | 0.0092/0.0136 | 0.0143/0.0135 | 0.0019/0.0176 | 0.0168/0.0102 |
37 | 0.0015/0.0119 | 0.0009/0.0058 | 0.0023/0.0093 | 0.0015/0.0119 | 0.0119/0.0079 |
38 | 0.0019/0.0102 | 0.0009/0.0122 | 0.0027/0.0107 | 0.0014/0.0098 | 0.0102/0.0094 |
39 | 0.0011/0.0064 | 0.0008/0.0061 | 0.0008/0.0072 | 0.0013/0.0066 | 0.0064/0.0081 |
Sum | 0.389/0.3883 | 0.4107/0.5269 | 0.6257/0.4009 | 0.3884/0.3983 | 0.3883/0.4719 |
Sample No. | Original Spectra | Intensity Normalization | Baseline Removal | Mg-Peak Wavelength Correction | Mg-Peak Feature Engineering |
---|---|---|---|---|---|
1 | 48.94/155.51 | 87.42/213.28 | 58.2/222.88 | 22.06/230.4 | 183.13/164.39 |
2 | 202.41/2787.89 | 453.41/219.02 | 215.53/496.72 | 145.95/709.12 | 1233.8/1316.16 |
3 | 31.46/18.51 | 39.42/16.96 | 28.68/10.34 | 21.7/4.95 | 75.92/179.44 |
4 | 53.79/1.1 | 14.35/65.9 | 18.2/11.85 | 0.6/1.44 | 17.31/5.11 |
5 | 27.06/60.05 | 28.04/62.66 | 4.27/67.81 | 30.5/76.27 | 57.01/164.48 |
6 | 21.96/34.99 | 62.07/58.33 | 28.58/31.3 | 13.21/31.81 | 56.77/25.57 |
7 | 354.78/1266.69 | 231.49/260.76 | 401.36/453.18 | 326.03/1148.95 | 945.88/870.93 |
8 | 71.42/23.62 | 176.75/203.17 | 154.14/40.2 | 45.82/140.47 | 194.12/156.17 |
9 | 27.32/8.62 | 5.15/68.95 | 24.76/3.22 | 12.86/18.05 | 31.66/134.23 |
10 | 17.59/15.3 | 29.5/189.61 | 21.21/49.93 | 29.89/23.75 | 60.66/169.07 |
11 | 13.56/15.3 | 8.49/9.72 | 14.67/19.28 | 24.07/32.97 | 31.79/1.46 |
12 | 8.81/2.76 | 11.61/73.66 | 42.09/11.71 | 21.49/12.95 | 11.47/47.27 |
13 | 47.76/42.28 | 24.85/41.3 | 26.31/115.56 | 2.85/45.34 | 82.64/5.69 |
14 | 60.74/219.96 | 168.7/427.23 | 68.76/316.93 | 20.53/250.33 | 261/148 |
15 | 21.66/46.07 | 12.26/41.68 | 11.84/41.11 | 18.6/48.28 | 19.8/42.39 |
16 | 13.33/22.28 | 17.88/47.46 | 5.01/70.8 | 5.97/18.07 | 121.07/138.09 |
17 | 34.87/64.72 | 30.46/51.21 | 36.62/45.89 | 37.96/62.13 | 26.34/88.94 |
18 | 35.42/61.57 | 53.68/160.47 | 18.15/131.54 | 28.09/95.69 | 110.76/60.99 |
19 | 17.34/13.28 | 26.96/17.39 | 36.6/67.3 | 16.39/28.91 | 67.43/15.97 |
20 | 14.24/19.31 | 7.99/59.42 | 3.82/12.98 | 2.5/35.96 | 40.68/10.51 |
21 | 25.44/2.68 | 31.68/85.08 | 29.26/36.87 | 68.78/1.56 | 20.62/55.12 |
22 | 17.18/37.11 | 21.92/121.47 | 6.95/32.63 | 19.39/28.94 | 44.98/37.9 |
23 | 15.07/64.62 | 163.04/169.4 | 39.23/53.42 | 10.3/42.37 | 52.62/91.44 |
24 | 59.14/46.06 | 41.53/73.76 | 57.79/45.69 | 55.15/47.62 | 84.6/74.28 |
25 | 19.35/43.66 | 19/60.4 | 30.15/69.76 | 15.38/45.21 | 22.5/38.63 |
26 | 33.2/24.99 | 59.06/303.45 | 73.45/31.5 | 25.85/37.94 | 22.22/3.18 |
27 | 21.27/19.56 | 14.21/223.13 | 22.48/25.93 | 23.6/0.69 | 34.39/81.16 |
28 | 19.41/47.56 | 27.86/22.95 | 25.83/37.34 | 3.28/51.75 | 25.9/30.04 |
29 | 22.68/2.66 | 33.25/20.28 | 27.66/34.2 | 25.25/2.45 | 18.72/35.67 |
30 | 25.83/125.71 | 31/55.86 | 81.77/188.91 | 25.48/156.65 | 124.55/9.72 |
31 | 23.39/38.69 | 31.43/58.73 | 35.5/32.76 | 15.77/30.66 | 16.2/54.33 |
32 | 35.56/17.39 | 19.5/87.32 | 48.34/17.39 | 29.32/6.41 | 11.29/65.59 |
33 | 263.9/624.51 | 222.85/159.53 | 310.16/645.99 | 272.92/555.54 | 867.78/665.44 |
34 | 133.15/54.57 | 24.96/30.55 | 443.91/58.7 | 169.86/60.85 | 23.59/91.85 |
35 | 44.1/6.97 | 41.52/44.05 | 42.06/28.47 | 47.55/24.35 | 12.01/17.83 |
36 | 45.58/465.24 | 154.39/314.84 | 224.91/262.32 | 27.64/520.69 | 105.16/165.46 |
37 | 29.67/267 | 16.14/31.48 | 52.42/123.32 | 31.22/273.42 | 117.86/96.16 |
38 | 181.97/16 | 126.95/1697.26 | 347.97/1538.92 | 160.87/417.54 | 1029.04/1260.18 |
39 | 88.69/180.86 | 56.35/14.29 | 52.56/288.1 | 103.26/228.88 | 558.28/481.47 |
Minimum | 8.81/1.1 | 5.15/9.72 | 3.82/3.22 | 0.6/0.69 | 11.29/1.46 |
Maximum | 354.78/2787.89 | 453.41/1697.26 | 443.91/1538.92 | 326.03/1148.95 | 1233.8/1316.16 |
Median | 30.57/40.49 | 31.22/67.43 | 36.61/47.91 | 25.37/45.28 | 56.89/77.72 |
Average | 57.15/178.61 | 67.36/150.31 | 81.31/148.02 | 50.2/142.29 | 174.91/182.06 |
Sample No. | BPNN Set 1 | BPNN Set 2 | PLS Set 1 | PLS Set 2 |
---|---|---|---|---|
1 | 22.59 | 91.51 | 66.87 | 57.84 |
2 | 93.11 | 197.52 | 54.78 | 156.66 |
3 | 45.53 | 30.68 | 103.29 | 29.00 |
4 | 24.08 | 43.51 | 7.09 | 45.77 |
5 | 63.64 | 99.07 | 20.08 | 62.00 |
6 | 28.50 | 13.53 | 24.79 | 12.64 |
7 | 32.24 | 12.85 | 25.79 | 24.34 |
8 | 18.88 | 49.42 | 57.19 | 27.06 |
9 | 45.25 | 109.86 | 110.10 | 60.24 |
10 | 11.35 | 12.90 | 13.82 | 18.93 |
11 | 57.52 | 48.47 | 105.49 | 32.77 |
12 | 28.51 | 15.77 | 28.32 | 35.22 |
13 | 11.61 | 10.23 | 8.89 | 19.07 |
14 | 35.35 | 27.72 | 3.73 | 11.91 |
15 | 49.67 | 114.91 | 98.70 | 69.47 |
16 | 51.16 | 236.78 | 129.89 | 41.43 |
17 | 35.38 | 23.42 | 67.67 | 13.66 |
18 | 68.39 | 184.50 | 51.47 | 80.13 |
19 | 121.27 | 17.52 | 35.79 | 40.16 |
20 | 25.04 | 16.78 | 61.36 | 16.59 |
21 | 56.71 | 102.45 | 6.64 | 68.32 |
22 | 13.60 | 7.84 | 59.09 | 12.86 |
23 | 91.33 | 47.27 | 99.82 | 16.84 |
24 | 82.13 | 34.59 | 35.47 | 9.54 |
25 | 427.48 | 52.82 | 162.62 | 64.54 |
26 | 76.29 | 59.56 | 12.05 | 38.20 |
27 | 158.59 | 66.48 | 274.49 | 7.62 |
28 | 22.28 | 21.32 | 112.14 | 10.61 |
29 | 10.56 | 40.97 | 21.70 | 31.04 |
Average | 62.34 | 61.73 | 64.11 | 38.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, L.; Xu, W.; Xu, X.; Cui, Z.; Jia, L.; Lv, W.; Shen, Z.; Shu, R. Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment. Remote Sens. 2023, 15, 3311. https://doi.org/10.3390/rs15133311
Liu Z, Li L, Xu W, Xu X, Cui Z, Jia L, Lv W, Shen Z, Shu R. Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment. Remote Sensing. 2023; 15(13):3311. https://doi.org/10.3390/rs15133311
Chicago/Turabian StyleLiu, Ziyi, Luning Li, Weiming Xu, Xuesen Xu, Zhicheng Cui, Liangchen Jia, Wenhao Lv, Zhihui Shen, and Rong Shu. 2023. "Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment" Remote Sensing 15, no. 13: 3311. https://doi.org/10.3390/rs15133311
APA StyleLiu, Z., Li, L., Xu, W., Xu, X., Cui, Z., Jia, L., Lv, W., Shen, Z., & Shu, R. (2023). Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment. Remote Sensing, 15(13), 3311. https://doi.org/10.3390/rs15133311