Integrating SBAS-InSAR and AT-LSTM for Time-Series Analysis and Prediction Method of Ground Subsidence in Mining Areas
Abstract
:1. Introduction
2. Materials and Data Processing
2.1. Study Area
2.2. Data
2.3. SBAS-InSAR
2.4. Wavelet Analysis
3. Surface Subsidence Prediction Model
3.1. Data Preprocessing
3.2. Long-Short Term Memory Network
3.3. Attention Mechanism
3.4. Model Training
3.5. Model Prediction and Evaluation
4. Results and Discussion
4.1. Spatiotemporal Analysis of Ground Subsidence in the Mining Area
4.2. Model Prediction
4.2.1. Sample Division
4.2.2. Network Parameters
4.2.3. Prediction Results
4.2.4. Distribution of Errors
4.3. Comparison of Prediction Methods
4.4. Strengths and Limitations
5. Conclusions
- (1)
- Ground subsidence is serious in the Pingshuo mine area, with a vertical subsidence rate of −205.89–59.70 mm/yr for 2019–2022. Subsidence is concentrated in the JG-1 mine and the three open-pit areas of ATB, AJL, and DLT. The subsidence in the subsidence basin of the JG-1 mine area has increased the fastest, with the cumulative subsidence having reached 139 mm in December 2019, and the extent of subsidence has grown along the direction of the working from east to west. The three open-pit areas have seen a slower increase in subsidence than the JG-1 mine, with a continuous development trend in the extent of subsidence, consistent with the direction of open-pit stripping.
- (2)
- The ground subsidence prediction results of the AT-LSTM model exhibit a spatial distribution that closely matches the actual situation, with prediction errors concentrated at ±2.0 mm. Compared with LSTM, the proposed model allows for better capturing of the time-varying characteristics of the data. Overall, the developed prediction method in this study demonstrates favorable performance and certain reliability for forecasting ground subsidence time-series data in mining areas.
- (3)
- This paper presents an approach using SBAS-InSAR results to predict ground subsidence in mining areas, which alleviates the difficulty of data acquisition. By comparison with typical time-series prediction methods, the proposed approach in this study exhibits certain validity and feasibility, and can provide services for environmental management in mining areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- York, R.; Bell, S.E. Energy Transitions or Additions?: Why a Transition from Fossil Fuels Requires More than the Growth of Renewable Energy. Energy Res. Soc. Sci. 2019, 51, 40–43. [Google Scholar] [CrossRef]
- Ghadimi, P.; Wang, C.; Azadnia, A.H.; Lim, M.K.; Sutherland, J.W. Life Cycle-Based Environmental Performance Indicator for the Coal-to-Energy Supply Chain: A Chinese Case Application. Resour. Conserv. Recycl. 2019, 147, 28–38. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Y.; Ren, H. Intelligent and Ecological Coal Mining as Well as Clean Utilization Technology in China: Review and Prospects. Int. J. Min. Sci. Technol. 2019, 29, 161–169. [Google Scholar] [CrossRef]
- Qian, L.; Wenzhong, Z.; Dai, W. Current Status, Challenges and Policy Recommendations Regarding the Sustainable Development of Mining Areas in China. J. Resour. Ecol. 2014, 5, 42–52. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, T.; Zhen, N.; Niu, R. Monitoring the Effects of Open-Pit Mining on the Eco-Environment Using a Moving Window-Based Remote Sensing Ecological Index. Environ. Sci. Pollut. Res. 2020, 27, 15716–15728. [Google Scholar] [CrossRef]
- Hou, H.; Ding, Z.; Zhang, S.; Guo, S.; Yang, Y.; Chen, Z.; Mi, J.; Wang, X. Spatial Estimate of Ecological and Environmental Damage in an Underground Coal Mining Area on the Loess Plateau: Implications for Planning Restoration Interventions. J. Clean. Prod. 2021, 287, 125061. [Google Scholar] [CrossRef]
- Loupasakis, C.; Angelitsa, V.; Rozos, D.; Spanou, N. Mining Geohazards—Land Subsidence Caused by the Dewatering of Opencast Coal Mines: The Case Study of the Amyntaio Coal Mine, Florina, Greece. Nat. Hazards 2014, 70, 675–691. [Google Scholar] [CrossRef]
- Xue, Y.-Q.; Zhang, Y.; Ye, S.-J.; Wu, J.-C.; Li, Q.-F. Land Subsidence in China. Environ. Geol. 2005, 48, 713–720. [Google Scholar] [CrossRef]
- Aobpaet, A.; Cuenca, M.C.; Hooper, A.; Trisirisatayawong, I. InSAR Time-Series Analysis of Land Subsidence in Bangkok, Thailand. Int. J. Remote Sens. 2013, 34, 2969–2982. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.-M.; Xiaojing, L.; Li, L. Mapping Land Subsidence over the Eastern Beijing City Using Satellite Radar Interferometry. Int. J. Digit. Earth 2018, 11, 504–519. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An Overview of the Small BAseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-Series Algorithms, Applications, and Challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Dey, T.K.; Biswas, K.; Chakravarty, D.; Misra, A.; Samanta, B. Spatio-Temporal Subsidence Estimation of Jharia Coal Field, India Using SBAS-Dinsar with Cosmo-Skymed Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 2123–2126. [Google Scholar]
- Karamvasis, K.; Karathanassi, V. Performance Analysis of Open Source Time Series InSAR Methods for Deformation Monitoring over a Broader Mining Region. Remote Sens. 2020, 12, 1380. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, Y.; Tan, K. Coal Mining Deformation Monitoring Using SBAS-InSAR and Offset Tracking: A Case Study of Yu County, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6077–6087. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Tao, Q.; Liu, G.; Wang, L.; Wang, F. Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence. Remote Sens. 2021, 13, 4365. [Google Scholar] [CrossRef]
- Li, R.; Li, Z.; Han, J.; Lu, P.; Qiao, G.; Meng, X.; Hao, T.; Zhou, F. Monitoring Surface Deformation of Permafrost in Wudaoliang Region, Qinghai–Tibet Plateau with ENVISAT ASAR Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102527. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Yang, C.; Zhu, W. Heifangtai Loess Landslide Type and Failure Mode Analysis with Ascending and Descending Spot-Mode TerraSAR-X Datasets. Landslides 2020, 17, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Lu, Y.; Jia, D. Land Deformation Associated with Exploitation of Groundwater in Changzhou City Measured by COSMO-SkyMed and Sentinel-1A SAR Data. Open Geosci. 2018, 10, 678–687. [Google Scholar] [CrossRef]
- Wang, H.; Fu, H.; Zhu, J.; Liu, Z.; Zhang, B.; Wang, C.; Li, Z.; Hu, J.; Yu, Y. Estimation of Subcanopy Topography Based on Single-Baseline TanDEM-X InSAR Data. J. Geod. 2021, 95, 84. [Google Scholar] [CrossRef]
- Li, B.; Wang, Z.; An, J.; Zhou, C.; Ma, Y. Time-Series Analysis of Subsidence in Nanning, China, Based on Sentinel-1A Data by the SBAS InSAR Method. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 291–304. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, C.; Li, B.; He, K.; Ren, C.; Liu, X.; Liu, D. Deformation Monitoring and Failure Mode Research of Mining-Induced Jianshanying Landslide in Karst Mountain Area, China with ALOS/PALSAR-2 Images. Landslides 2021, 18, 2739–2750. [Google Scholar] [CrossRef]
- Yuan, X.; Lin, M.; Han, B.; Zhao, L.; Wang, W.; Sun, J.; Wang, W. Observing Sea Surface Current by Gaofen-3 Satellite Along-Track Interferometric SAR Experimental Mode. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7762–7770. [Google Scholar] [CrossRef]
- Potin, P.; Rosich, B.; Miranda, N.; Grimont, P.; Shurmer, I.; O’Connell, A.; Krassenburg, M.; Gratadour, J.-B. Copernicus Sentinel-1 Constellation Mission Operations Status. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5385–5388. [Google Scholar]
- Giao, P.H.; Hue, V.T.; Han, N.D.; Anh, N.T.H.; Minh, N.N. Land Subsidence Prediction for a New Urban Mass Rapid Transit Line in Hanoi. Undergr. Space 2020, 5, 93–104. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Z.; Wang, Q.; Du, J.; Lu, W.; Ning, D. A Three-Dimensional Fluid-Solid Model, Coupling High-Rise Building Load and Groundwater Abstraction, for Prediction of Regional Land Subsidence. Hydrogeol. J. 2019, 27, 1515–1526. [Google Scholar] [CrossRef]
- Cui, X.; Wang, J.; Liu, Y. Prediction of Progressive Surface Subsidence above Longwall Coal Mining Using a Time Function. Int. J. Rock Mech. Min. Sci. 2001, 38, 1057–1063. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Z.; Chen, Z.; Wang, S.; Cui, H.; Zheng, Y. Predictable Condition Analysis and Prediction Method of SBAS-InSAR Coal Mining Subsidence. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Rahmati, O.; Golkarian, A.; Biggs, T.; Keesstra, S.; Mohammadi, F.; Daliakopoulos, I.N. Land Subsidence Hazard Modeling: Machine Learning to Identify Predictors and the Role of Human Activities. J. Environ. Manag. 2019, 236, 466–480. [Google Scholar] [CrossRef]
- Cieślik, K.; Milczarek, W. Application of Machine Learning in Forecasting the Impact of Mining Deformation: A Case Study of Underground Copper Mines in Poland. Remote Sens. 2022, 14, 4755. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Wang, S.; Xue, X.-L.; Zheng, G.; Mei, G.-X. Characteristics of Ground Settlement Due to Combined Actions of Groundwater Drawdown and Enclosure Wall Movement. Acta Geotech. 2022, 17, 4095–4112. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Chen, H.-B.; Liao, H.; Xue, X.-L.; Chen, Q.-N.; Diao, Y. Behaviours of Groundwater and Strata during Dewatering of Large-Scale Excavations with a Nearby Underground Barrier. J. Hydrol. 2023, 620, 129400. [Google Scholar] [CrossRef]
- Ebel, B.A.; Loague, K.; Montgomery, D.R.; Dietrich, W.E. Physics-Based Continuous Simulation of Long-Term near-Surface Hydrologic Response for the Coos Bay Experimental Catchment: SIMULATION OF LONG-TERM HYDROLOGIC RESPONSE. Water Resour. Res. 2008, 44, W07417. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Wang, Z.-F.; Cheng, W.-C. A Review on Land Subsidence Caused by Groundwater Withdrawal in Xi’an, China. Bull. Eng. Geol. Environ. 2019, 78, 2851–2863. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, Y.; Wang, L.; Zhang, K.; Daemen, J.J.K.; Liu, W. Time-Dependent Subsidence Prediction Model and Influence Factor Analysis for Underground Gas Storages in Bedded Salt Formations. Eng. Geol. 2015, 187, 156–169. [Google Scholar] [CrossRef]
- Zhou, Q.; Hu, Q.; Ai, M.; Xiong, C.; Jin, H. An Improved GM(1,3) Model Combining Terrain Factors and Neural Network Error Correction for Urban Land Subsidence Prediction. Geomat. Nat. Hazards Risk 2020, 11, 212–229. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.; Yu, J.; Simic Milas, A.; Li, X.; Liu, L. Assessing the Impact of Building Volume on Land Subsidence in the Central Business District of Beijing with SAR Tomography. Can. J. Remote Sens. 2017, 43, 177–193. [Google Scholar] [CrossRef]
- Mohebbi Tafreshi, G.; Nakhaei, M.; Lak, R. A GIS-Based Comparative Study of Hybrid Fuzzy-Gene Expression Programming and Hybrid Fuzzy-Artificial Neural Network for Land Subsidence Susceptibility Modeling. Stoch. Environ. Res. Risk Assess. 2020, 34, 1059–1087. [Google Scholar] [CrossRef]
- Wu, L.; Wang, J.; Zhou, J.; Yang, T.; Yan, X.; Zhao, Y.; Ye, Z.; Xu, N. Multi-Scale Geotechnical Features of Dredger Fills and Subsidence Risk Evaluation in Reclaimed Land Using BN. Mar. Georesources Geotechnol. 2020, 38, 947–969. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar] [CrossRef]
- Niu, Z.; Zhong, G.; Yu, H. A Review on the Attention Mechanism of Deep Learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Li, S. Tempo-Spatial Changes and Main Anthropogenic Influence Factors of Vegetation Fractional Coverage in a Large-Scale Opencast Coal Mine Area from 1992 to 2015. J. Clean. Prod. 2019, 232, 940–952. [Google Scholar] [CrossRef]
- Yang, W.; Sun, W.; Han, Q.; Li, S. Investigation on current situation of geological environment in Pinshuo coal mining area. Coal Eng. 2016, 48, 87–90. [Google Scholar]
- Zhang, M.; Zhou, W.; Li, Y. The Analysis of Object-Based Change Detection in Mining Area: A Case Study with Pingshuo Coal Mine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W7, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Yang, K.; Bai, Z.; Cheng, H.; Liu, F. The Development of Topsoil Properties under Different Reclaimed Land Uses in the Pingshuo Opencast Coalmine of Loess Plateau of China. Ecol. Eng. 2017, 100, 237–245. [Google Scholar] [CrossRef]
- Bai, Z.; Yun, W. A case study on pingsshuo mining area: Land rehabilitation and reutilization in mining districts. Resour. Ind. 2008, 10, 32. [Google Scholar]
- Wu, J.; Zhu, Q.; Qiao, N.; Wang, Z.; Sha, W.; Luo, K.; Wang, H.; Feng, Z. Ecological Risk Assessment of Coal Mine Area Based on “Source-Sink” Landscape Theory—A Case Study of Pingshuo Mining Area. J. Clean. Prod. 2021, 295, 126371. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, H.; Yang, D.; Liu, Z.; Ma, S.; Pei, Y.; Zhang, J.; Tang, B. Deformation Responses of Landslides to Seasonal Rainfall Based on InSAR and Wavelet Analysis. Landslides 2022, 19, 199–210. [Google Scholar] [CrossRef]
- Cohen, M.X. A Better Way to Define and Describe Morlet Wavelets for Time-Frequency Analysis. NeuroImage 2019, 199, 81–86. [Google Scholar] [CrossRef]
- Fu, T. A Review on Time Series Data Mining. Eng. Appl. Artif. Intell. 2011, 24, 164–181. [Google Scholar] [CrossRef]
- Esling, P.; Agon, C. Time-Series Data Mining. ACM Comput. Surv. 2012, 45, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. Available online: https://arxiv.org/abs/1412.6980v9 (accessed on 2 April 2023).
- Liu, Q.; Zhou, W. Remote sensing monitoring and research on land subsidence in coal mining areas—A case study of Pingshuo mining area. In Proceedings of the 8th National Academic Conference on Land Reclamation and Ecological Restoration in Mining Areas, Henan, China, 12 October 2019; pp. 81–89. [Google Scholar]
- Sun, J.; Zhang, J. Ground deformation monitoring of open-pit coal mine based on SBAS-InSAR and offset tracking techniques. Saf. Coal Mines 2022, 53, 162–169. [Google Scholar]
- Zhao, H.; Ma, F.; Zhang, Y.; Guo, J. Monitoring and Analysis of the Mining-Induced Ground Movement in the Longshou Mine, China. Rock Mech. Rock Eng. 2013, 46, 207–211. [Google Scholar] [CrossRef]
- Tang, W.; Motagh, M.; Zhan, W. Monitoring Active Open-Pit Mine Stability in the Rhenish Coalfields of Germany Using a Coherence-Based SBAS Method. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102217. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Wei, J.; Wu, H.; Deng, M. HLSTM: Heterogeneous Long Short-Term Memory Network for Large-Scale InSAR Ground Subsidence Prediction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8679–8688. [Google Scholar] [CrossRef]
- Lim, B.; Zohren, S. Time-Series Forecasting with Deep Learning: A Survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [Google Scholar] [CrossRef]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current Status and Future Directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Deng, M.; Wu, H.; Kang, Y.; Wei, J. Time series prediction method of large-scale surface subsidence based on deep learning. Acta Geod. Et Cartogr. Sin. 2021, 50, 396–404. [Google Scholar]
- Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep Learning with Long Short-Term Memory for Time Series Prediction. IEEE Commun. Mag. 2019, 57, 114–119. [Google Scholar] [CrossRef] [Green Version]
Parameter | Sentinel-1A |
---|---|
Band | C |
Direction of orbit | Ascending |
Track number | 113 |
Incidence angle/° | 39.16 |
Azimuth/° | 346.55 |
Polarization mode | VV |
Spatial resolution/m | 5 × 20 |
Period/d | 12 |
Date range | 2019.01.20–2022.03.29 |
number of SLCs | 37 |
Parameters | Settings |
---|---|
Time step (L) | 16 |
Output length (Y) | 1 |
Number of hidden layers (S) | 3 |
Number of neurons in the hidden layer (F) | 32 |
Epochs | 200 |
Loss function | MSE |
Activation function | Tanh |
Optimizer | ADAM |
Batch size | 512 |
MAE/mm | MSE/mm2 | |||
---|---|---|---|---|
LSTM | AT-LSTM | LSTM | AT-LSTM | |
A | 2.52 | 0.71 | 5.83 | 2.16 |
B | 1.34 | 1.26 | 7.47 | 3.29 |
C | 1.59 | 0.99 | 6.09 | 2.21 |
D | 3.41 | 1.04 | 6.16 | 2.37 |
E | 5.36 | 1.52 | 9.51 | 3.46 |
F | 4.28 | 0.95 | 7.95 | 2.53 |
Model | MAE/mm | MSE/mm2 | Modeling/Minutes |
---|---|---|---|
holt-winter | 5.44 | 4.28 | 6.8 |
ARIMA | 4.86 | 3.37 | 77.9 |
SVR | 3.13 | 3.41 | 23.3 |
GM(1,1) | 3.24 | 3.11 | 5.2 |
RNN | 2.35 | 2.74 | 25.1 |
LSTM | 1.28 | 2.58 | 30.5 |
AT-LSTM | 0.73 | 1.96 | 32.6 |
Computer configurations | Processor: Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz 3.00 GHz GPU NVIDIA GeForce RTX 2080 Ti: Memory: 16 G System: Windows 10 (×64) Programming language: python 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, J. Integrating SBAS-InSAR and AT-LSTM for Time-Series Analysis and Prediction Method of Ground Subsidence in Mining Areas. Remote Sens. 2023, 15, 3409. https://doi.org/10.3390/rs15133409
Liu Y, Zhang J. Integrating SBAS-InSAR and AT-LSTM for Time-Series Analysis and Prediction Method of Ground Subsidence in Mining Areas. Remote Sensing. 2023; 15(13):3409. https://doi.org/10.3390/rs15133409
Chicago/Turabian StyleLiu, Yahong, and Jin Zhang. 2023. "Integrating SBAS-InSAR and AT-LSTM for Time-Series Analysis and Prediction Method of Ground Subsidence in Mining Areas" Remote Sensing 15, no. 13: 3409. https://doi.org/10.3390/rs15133409
APA StyleLiu, Y., & Zhang, J. (2023). Integrating SBAS-InSAR and AT-LSTM for Time-Series Analysis and Prediction Method of Ground Subsidence in Mining Areas. Remote Sensing, 15(13), 3409. https://doi.org/10.3390/rs15133409