A Multi-Target Detection Method Based on Improved U-Net for UWB MIMO Through-Wall Radar
Abstract
:1. Introduction
2. Problem Analysis
2.1. Through-Wall Imaging
2.2. Unresolving and Masking Phenomena in Through-Wall Multi-Target Imaging
3. Target Detection Method Based on Improved U-Net
3.1. U-Net Model
3.2. ResNet Module
3.3. SE Module
3.4. Improved U-Net Model
- (1)
- The skip connection in U-Net stitches the shallow target details into the deep feature map, which solves the problem of the lack of details of weak targets or adjacent targets in the deep network;
- (2)
- The combined SE-ResNet module can make up for the vanishing gradients in the deep network during gradient descent network training through the ResNet module. In addition, it can also increase the weight of useful features and suppress the weight of useless features through the SE module, so as to describe weak targets and adjacent targets in through-wall multi-target imaging accurately.
4. Simulation
4.1. Dataset Generation and Model Training
4.2. Metric Evaluation of the Model
4.3. Simulation Result
4.4. Ablation Study
5. Experiment
5.1. Detection of Stationary Targets
5.2. Detection of Moving Targets
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, C.; Ni, Z.-K.; Pan, J.; Zheng, Z.; Ye, S.; Fang, G. A Method for Reducing Timing Jitter’s Impact in through-Wall Human Detection by Ultra-Wideband Impulse Radar. Remote Sens. 2021, 13, 3577. [Google Scholar] [CrossRef]
- Li, Z.; Jin, T.; Dai, Y.; Song, Y. Through-Wall Multi-Subject Localization and Vital Signs Monitoring Using UWB MIMO Imaging Radar. Remote Sens. 2021, 13, 2905. [Google Scholar] [CrossRef]
- Maiti, S.; Bhattacharya, A. Microwave Detection of Respiration Rate of a Living Human Hidden Behind an Inhomogeneous Optically Opaque Medium. IEEE Sens. J. 2021, 21, 6133–6144. [Google Scholar] [CrossRef]
- Ye, S.; Zhou, B.; Fang, G. Design of a Novel Ultrawideband Digital Receiver for Pulse Ground-Penetrating Radar. IEEE Geosci. Remote Sens. Lett. 2011, 8, 656–660. [Google Scholar] [CrossRef]
- Guangyou, F.; Pipan, M. Instantaneous Parameters Calculation and Analysis of Impulse Ground Penetrating Radar (GPR) Data. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, 9–13 July 2001; Volume 6, pp. 2695–2697. [Google Scholar]
- Fang, G. The Research Activities of Ultrawide-Band (UWB) Radar in China. In Proceedings of the IEEE International Conference on Ultra-Wideband, Singapore, 24–26 September 2007. [Google Scholar]
- Zhao, B.; Zhang, Y.; Lang, S.; Liu, Y.; Zhang, F.; Tang, C.; Liu, X.; Fang, G.; Cui, X. Shallow-Layers-Detection Ice Sounding Radar for Mapping of Polar Ice Sheets. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4301010. [Google Scholar] [CrossRef]
- Xu, B.; Lang, S.; Cui, X.; Li, L.; Liu, X.; Guo, J.; Sun, B. Focused Synthetic Aperture Radar Processing of Ice-Sounding Data Collected Over East Antarctic Ice Sheet via Spatial-Correlation-Based Algorithm Using Fast Back Projection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5233009. [Google Scholar] [CrossRef]
- IEEE Std 1672-2006; IEEE Standard for Ultrawideband Radar Definitions. IEEE: Piscataway, NJ, USA, 2007; pp. 1–19. [CrossRef]
- IEEE 1672-2006Cor 1-2008 Corrigendum IEEE Std 1672-2006; IEEE Standard for Ultrawideband Radar Definitions—Corrigendum 1. IEEE: Piscataway, NJ, USA, 2008; pp. 1–5. [CrossRef]
- Ma, Y.; Liang, F.; Wang, P.; Lv, H.; Yu, X.; Zhang, Y.; Wang, J. An Accurate Method to Distinguish Between Stationary Human and Dog Targets under Through-Wall Condition Using UWB Radar. Remote Sens. 2019, 11, 2571. [Google Scholar] [CrossRef] [Green Version]
- Randazzo, A.; Ponti, C.; Fedeli, A.; Estatico, C.; D’Atanasio, P.; Pastorino, M.; Schettini, G. A Through-the-Wall Imaging Approach Based on a TSVD/Variable-Exponent Lebesgue-Space Method. Remote Sens. 2021, 13, 2028. [Google Scholar] [CrossRef]
- Pan, J.; Ni, Z.-K.; Shi, C.; Zheng, Z.; Ye, S.; Fang, G. Motion Compensation Method Based on MFDF of Moving Target for UWB MIMO Through-Wall Radar System. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3509205. [Google Scholar] [CrossRef]
- Rohman, B.P.A.; Andra, M.B.; Nishimoto, M. Through-the-Wall Human Respiration Detection Using UWB Impulse Radar on Hovering Drone. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6572–6584. [Google Scholar] [CrossRef]
- Hu, Z.; Zeng, Z.; Wang, K.; Feng, W.; Zhang, J.; Lu, Q.; Kang, X. Design and Analysis of a UWB MIMO Radar System with Miniaturized Vivaldi Antenna for Through-Wall Imaging. Remote Sens. 2019, 11, 1867. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Jin, T.; Dai, Y.; Song, Y.; Zhou, X. Through-Wall Human Pose Reconstruction via UWB MIMO Radar and 3D CNN. Remote Sens. 2021, 13, 241. [Google Scholar] [CrossRef]
- Li, H.; Cui, G.; Kong, L.; Chen, G.; Wang, M.; Guo, S. Robust Human Targets Tracking for MIMO Through-Wall Radar via Multi-Algorithm Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1154–1164. [Google Scholar] [CrossRef]
- Qi, F.; Li, Z.; Ma, Y.; Liang, F.; Lv, H.; Wang, J.; Fathy, A.E. Generalization of Channel Micro-Doppler Capacity Evaluation for Improved Finer-Grained Human Activity Classification Using MIMO UWB Radar. IEEE Trans. Microw. Theory Tech. 2021, 69, 4748–4761. [Google Scholar] [CrossRef]
- Tivive, F.H.C.; Bouzerdoum, A. Toward Moving Target Detection in Through-the-Wall Radar Imaging. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2028–2040. [Google Scholar] [CrossRef]
- Li, H.; Cui, G.; Kong, L.; Guo, S.; Wang, M. Scale-Adaptive Human Target Tracking for Through-Wall Imaging Radar. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1348–1352. [Google Scholar] [CrossRef]
- Guo, S.; Chen, J.; Shi, Z.; Li, H.; Wu, P.; Li, S.; Cui, G.; Yang, X. Graph Matching Based Image Registration for Multi-View Through-the-Wall Imaging Radar. IEEE Sens. J. 2022, 22, 1486–1494. [Google Scholar] [CrossRef]
- Tang, V.H.; Bouzerdoum, A.; Phung, S.L. Compressive Radar Imaging of Stationary Indoor Targets with Low-Rank Plus Jointly Sparse and Total Variation Regularizations. IEEE Trans. Image Process. 2020, 29, 4598–4613. [Google Scholar] [CrossRef]
- Song, Y.; Hu, J.; Chu, N.; Jin, T.; Zhang, J.; Zhou, Z. Building Layout Reconstruction in Concealed Human Target Sensing via UWB MIMO Through-Wall Imaging Radar. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1199–1203. [Google Scholar] [CrossRef]
- Wankhade, A.; Nandedkar, A.V.; Rathod, S.M.; Amritkar, Y.; Rathod, S.; Sharma, A. Multiple Target Vital Sign Detection Using Ultra-Wideband Radar. In Proceedings of the 2022 International Conference on Signal and Information Processing (IConSIP), Pune, India, 26–27 August 2022; pp. 1–4. [Google Scholar]
- Urdzík, D.; Kocur, D. CFAR Detectors for through Wall Tracking of Moving Targets by M-Sequence UWB Radar. In Proceedings of the 20th International Conference Radioelektronika 2010, Brno, Czech Republic, 19–21 April 2010. [Google Scholar]
- Liu, X.; Xu, S.; Tang, S. CFAR Strategy Formulation and Evaluation Based on Fox’s H-Function in Positive Alpha-Stable Sea Clutter. Remote Sens. 2020, 12, 1273. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, A.K.; Singh, A.; Kumar, I.V. Spatial Context Energy Curve-Based Multilevel 3-D Otsu Algorithm for Image Segmentation. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2760–2773. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 2007, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Pan, J.; Ni, Z.; Shi, C.; Ye, S.; Fang, G. Human Posture Reconstruction for Through-the-Wall Radar Imaging Using Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3505205. [Google Scholar] [CrossRef]
- Vishwakarma, S.; Ram, S.S. Mitigation of Through-Wall Distortions of Frontal Radar Images Using Denoising Autoencoders. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6650–6663. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xia, T. In-Wall Clutter Suppression Based on Low-Rank and Sparse Representation for Through-the-Wall Radar. IEEE Geosci. Remote Sens. Lett. 2016, 13, 671–675. [Google Scholar] [CrossRef]
- Wang, F.F.; Zhang, Y.R.; Zhang, H.M. Through Wall Detection with SVD and SVM under Unknown Wall Characteristics. In Proceedings of the 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Nanjing, China, 16–18 May 2016; pp. 1–3. [Google Scholar]
- Huang, S.; Qian, J.; Wang, Y.; Yang, X.; Yang, L. Through-the-Wall Radar Super-Resolution Imaging Based on Cascade U-Net. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 2933–2936. [Google Scholar]
- Li, H.; Cui, G.; Guo, S.; Kong, L.; Yang, X. Human Target Detection Based on FCN for Through-the-Wall Radar Imaging. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1565–1569. [Google Scholar] [CrossRef]
- Pan, J.; Ye, S.; Shi, C.; Yan, K.; Liu, X.; Ni, Z.; Yang, G.; Fang, G. 3D Imaging of Moving Targets for Ultra-Wideband MIMO through-Wall Radar System. IET Radar Sonar Navig. 2021, 15, 261–273. [Google Scholar] [CrossRef]
- Tan, K. A Fast Omega-K Algorithm for Near-Field 3-D Imaging of MIMO Synthetic Aperture Radar Data. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1431–1435. [Google Scholar] [CrossRef]
- Pan, J.; Ye, S.; Ni, Z.K.; Shi, C.; Zheng, Z.; Zhao, D.; Fang, G. Enhancement of Vital Signals Based on Low-Rank, Sparse Representation for UWB through-Wall Radar. Remote Sens. Lett. 2022, 13, 98–106. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [Green Version]
SE-ResNet Block | Type | Filter | Stride | Output Size |
---|---|---|---|---|
SE-ResNet block 1 | conv | 1 × 1 | 1 | 256 × 256 × 64 |
conv | 3 × 3 | 1 | 256 × 256 × 64 | |
conv | 1 × 1 | 1 | 256 × 256 × 64 | |
max pool | 2 × 2 | 2 | 128 × 128 × 64 | |
SE-ResNet block 2 | conv | 1 × 1 | 1 | 128 × 128 × 128 |
conv | 3 × 3 | 1 | 128 × 128 × 128 | |
conv | 1 × 1 | 1 | 128 × 128 × 128 | |
max pool | 2 × 2 | 2 | 64 × 64 × 128 | |
SE-ResNet block 3 | conv | 1 × 1 | 1 | 64 × 64 × 256 |
conv | 3 × 3 | 1 | 64 × 64 × 256 | |
conv | 1 × 1 | 1 | 64 × 64 × 256 | |
max pool | 2 × 2 | 2 | 32 × 32 × 256 | |
SE-ResNet block 4 | conv | 1 × 1 | 1 | 32 × 32 × 512 |
conv | 3 × 3 | 1 | 32 × 32 × 512 | |
conv | 1 × 1 | 1 | 32 × 32 × 512 | |
max pool | 2 × 2 | 2 | 16 × 16 × 512 | |
SE-ResNet block 5 | conv | 1 × 1 | 1 | 16 × 16 × 1024 |
conv | 3 × 3 | 1 | 16 × 16 × 1024 | |
conv | 1 × 1 | 1 | 16 × 16 × 1024 | |
up-conv | 2 × 2 | 1 | 32 × 32 × 512 | |
SE-ResNet block 6 | conv | 1 × 1 | 1 | 32 × 32 × 512 |
conv | 3 × 3 | 1 | 32 × 32 × 512 | |
conv | 1 × 1 | 1 | 32 × 32 × 512 | |
up-conv | 2 × 2 | 1 | 64 × 64 × 256 | |
SE-ResNet block 7 | conv | 1 × 1 | 1 | 64 × 64 × 256 |
conv | 3 × 3 | 1 | 64 × 64 × 256 | |
conv | 1 × 1 | 1 | 64 × 64 × 256 | |
up-conv | 2 × 2 | 1 | 128 × 128 × 128 | |
SE-ResNet block 8 | conv | 1 × 1 | 1 | 128 × 128 × 128 |
conv | 3 × 3 | 1 | 128 × 128 × 128 | |
conv | 1 × 1 | 1 | 128 × 128 × 128 | |
up-conv | 2 × 2 | 1 | 256 × 256 × 64 | |
SE-ResNet block 9 | conv | 1 × 1 | 1 | 256 × 256 × 64 |
conv | 3 × 3 | 1 | 256 × 256 × 64 | |
conv | 1 × 1 | 1 | 256 × 256 × 64 | |
conv | 1 × 1 | 1 | 256 × 256 × 1 |
Dice | IoU | MDR | ||
---|---|---|---|---|
OS-CFAR | - | - | 70.1% | 18.1% |
FCN | 88.0% | 85.2% | 89.7% | 4.1% |
U-Net | 88.2% | 85.4% | 89.9% | 4.1% |
Improved U-Net | 89.0% | 86.4% | 91.6% | 3.0% |
Dice | IoU | MDR | ||
---|---|---|---|---|
U-Net | 88.2% | 85.4% | 89.9% | 4.1% |
U-SENet | 88.6% | 85.8% | 90.2% | 3.4% |
U-ResNet | 88.8% | 86.0% | 90.3% | 3.4% |
Improved U-Net | 89.0% | 86.4% | 91.6% | 3.0% |
MDR | ||
---|---|---|
OS-CFAR | 66.5% | 22.8% |
FCN | 87.1% | 5.5% |
U-Net | 87.5% | 5.2% |
Improved U-Net | 89.3% | 4.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Zheng, Z.; Zhao, D.; Yan, K.; Nie, J.; Zhou, B.; Fang, G. A Multi-Target Detection Method Based on Improved U-Net for UWB MIMO Through-Wall Radar. Remote Sens. 2023, 15, 3434. https://doi.org/10.3390/rs15133434
Pan J, Zheng Z, Zhao D, Yan K, Nie J, Zhou B, Fang G. A Multi-Target Detection Method Based on Improved U-Net for UWB MIMO Through-Wall Radar. Remote Sensing. 2023; 15(13):3434. https://doi.org/10.3390/rs15133434
Chicago/Turabian StylePan, Jun, Zhijie Zheng, Di Zhao, Kun Yan, Jinliang Nie, Bin Zhou, and Guangyou Fang. 2023. "A Multi-Target Detection Method Based on Improved U-Net for UWB MIMO Through-Wall Radar" Remote Sensing 15, no. 13: 3434. https://doi.org/10.3390/rs15133434
APA StylePan, J., Zheng, Z., Zhao, D., Yan, K., Nie, J., Zhou, B., & Fang, G. (2023). A Multi-Target Detection Method Based on Improved U-Net for UWB MIMO Through-Wall Radar. Remote Sensing, 15(13), 3434. https://doi.org/10.3390/rs15133434