The Effects of Discharge Changes in Siberian Rivers on Arctic Sea-Ice Melting
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.1.1. Discharge and Absorbance Data
3.1.2. Riverine Heat Data
3.1.3. Sea Ice Concentration Data
3.2. Methods
3.2.1. Theil-Sen Median Trend and Mann-Kendall Test
3.2.2. Detrending and Pearson Correlation Analysis
4. Results
4.1. Seasonality and Monthly Variations in Discharge, Riverine Heat, and SIC
4.2. Variations in Annual Discharge, Riverine Heat, and SIC
4.3. Effects of Monthly Discharge and Riverine Heat on SIC
4.4. Seasonality Effects of Discharge and Riverine Heat on SIC
4.5. Effects of Annual Discharge and Riverine Heat on SIC
5. Discussion
5.1. Drivers of the Changes in Discharge, Riverine Heat, and SIC
5.2. The Effects of Mechanisms of Discharge and Riverine Heat on SIC
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Post, E.; Bhatt, U.S.; Bitz, C.M.; Brodie, J.F.; Fulton, T.L.; Hebblewhite, M.; Walker, D.A. Ecological consequences of sea-ice decline. Science 2013, 341, 519–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alabia, I.D.; Molinos, J.G.; Hirata, T.; Mueter, F.J.; David, C.L. Pan-Arctic marine biodiversity and species co-occurrence patterns under recent climate. Sci. Rep. 2023, 13, 4076. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Kang, S.C.; Guo, J.M.; Xu, M.; Zhang, Z.M. Variation of sea ice and perspectives of the Northwest Passage in the Arctic Ocean. Adv. Clim. Chang. Res. 2021, 12, 447–455. [Google Scholar] [CrossRef]
- Comiso, J.C.; Meier, W.N.; Gersten, R. Variability and trends in the Arctic sea ice cover: Results from different techniques. J. Geophys. Res. Oceans 2017, 122, 6883–6900. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Meier, W.N. The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci. 2019, 1436, 36–53. [Google Scholar] [CrossRef]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Maslanik, J.A.; Fowler, C.; Stroeve, J.; Drobot, S.; Zwally, J.; Yi, D.; Emery, W. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett. 2007, 34, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Shiklomanov, I.A.; Shiklomanov, A.I. Climatic change and dynamics of river discharge into the Arctic Ocean. Water Resour. 2003, 30, 593–601. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Hinzman, L.D.; Peterson, B.J.; Bromwich, D.H.; Hamilton, L.C.; Morison, J.; Romanovsky, V.E.; Sturm, M.; Webb, R.S. The Hydrological Cycle and Its Role in Arcticand Global Environmental Change: A Rationale and Strategy for Synthesis Study, 3rd ed.; Arctic Research Consortium of the U.S.: Fairbanks, AK, USA, 2001; p. 84. [Google Scholar]
- Magritsky, D.V.; Frolova, N.L.; Evstigneev, V.M.; Povalishnikova, E.S.; Kireeva, M.B.; Pakhomova, O.M. Long-term changes of river water inflow into the seas of the Russian Arctic sector. Polarforschung 2018, 87, 177–194. [Google Scholar]
- Shiklomanov, A.; Déry, S.; Tretiakov, M.; Yang, D.Q.; Magritsky, M.; Georgiadi, A.; Tang, W.Q. River Freshwater Flux to the Arctic Ocean. In Arctic Hydrology, Permafrost and Ecosystems, 1st ed.; Yang, D., Kane, D., Eds.; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2021; pp. 703–738. [Google Scholar]
- Xu, M.; Kang, S.C.; Wang, X.M.; Wu, H.; Hu, D.D.; Yang, D.Q. Climate and hydrological changes in the Ob River Basin during 1936–2017. Hydrol. Process. 2019, 34, 1821–1836. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Q.W.; Pozdniakov, S.P.; Liu, S.Q.; Ma, N.; Wang, T.Y.; Zhang, Y.Q.; Yu, J.J.; Xie, J.X.; Fu, G.B.; et al. Potential role of permafrost thaw on increasing Siberian river discharge. Environ. Res. Lett. 2021, 16, 034046. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.; Liu, J. Dominant climate factors influencing the Arctic runoff and association between the Arctic runoff and sea ice Acta. Oceanol. Sin. 2010, 29, 10–20. [Google Scholar] [CrossRef]
- Dean, K.G.; Stringer, W.J.; Ahlnas, K.; Searcy, C.; Weingartner, T. The influence of river discharge on the thawing of sea ice, Mackenzie River Delta: Albedo and temperature analyses. Polar Res. 1994, 13, 83–94. [Google Scholar] [CrossRef]
- Whitefield, J.; Winsor, P.; McClelland, J.; Menemenlis, D. A new river discharge and river temperature climatology data set for the pan-Arctic region. Ocean Model. 2015, 88, 1–15. [Google Scholar] [CrossRef]
- Yang, D.; Kane, D. River Heat Flux into the Arctic Ocean. In Arctic Hydrology, Permafrost and Ecosystems, 1st ed.; Yang, D., Kane, D., Eds.; Springer: Cham, Switzerland; Berlin//Heidelberg, Germany, 2021; pp. 739–761. [Google Scholar]
- Park, H.; Watanabe, E.; Kim, Y.; Polyakov, I.; Oshima, K.; Zhang, X.D.; Kimball, J.S.; Yang, D.Q. Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and atmospheric warming. Sci. Adv. 2020, 6, eabc4699. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Hall, D.K.; Rigor, I.G.; Li, P.; Neumann, G. Effects of Mackenzie River discharge and bathymetry on sea ice in the Beaufort Sea. Geophys. Res. Lett. 2014, 41, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Bauch, D.; Hölemann, J.A.; Nikulina, A.; Wegner, C.; Janout, M.A.; Timokhov, L.A.; Kassens, H. Correlation of river water and local sea-ice melting on the Laptev Sea shelf (Siberian Arctic). J. Geophys. Res. Oceans 2013, 118, 550–561. [Google Scholar] [CrossRef] [Green Version]
- Letscher, R.T.; Hansell, D.A.; Kadko, D. Rapid removal of terrigenous dissolved organic carbon over the Eurasian shelves of the Arctic Ocean. Mar. Chem. 2011, 123, 78–87. [Google Scholar] [CrossRef]
- McClellan, J.W. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. 2004, 109, D18102. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Kane, D.L.; Hinzman, L.D.; Zhang, X.B.; Zhang, T.J.; Ye, H.Y. Siberian Lena River hydrologic regime and recent change. J. Geophys. Res. Atmos. 2002, 107, 4694. [Google Scholar] [CrossRef]
- Yang, D.; Ye, B.; Kane, D.L. Streamflow changes over Siberian Yenisei river basin. J. Hydrol. 2004, 296, 59–80. [Google Scholar] [CrossRef]
- Dukhovskoy, D.; Johnson, M.; Proshutinsky, A. Arctic decadal variability from an idealized atmosphere-ice-ocean model: 2. Simulation of decadal oscillations. J. Geophys. Res. 2006, 111, C06029. [Google Scholar] [CrossRef] [Green Version]
- Thibodeau, B.; Bauch, D.; Kassens, H.; Timokhov, L.A. Interannual variations in river water content and distribution over the Laptev Sea between 2007 and 2011: The Arctic Dipole connection. Geophys. Res. Lett. 2014, 41, 7237–7244. [Google Scholar] [CrossRef] [Green Version]
- Zatsepin, A.G.; Zavialov, P.O.; Kremenetskiy, V.V.; Poyarkov, S.G.; Soloviev, D.M. The upper desalinated layer in the Kara Sea. Oceanology 2010, 50, 657–667. [Google Scholar] [CrossRef]
- Zavialov, P.O.; Izhitskiy, A.S.; Osadchiev, A.A.; Pelevin, V.V.; Grabovskiy, A.B. The structure of thermohaline and bio-optical fields in the upper layer of the Kara Sea in September 2011. Oceanology 2015, 55, 461–471. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Pisareva, M.N.; Spivak, E.A.; Shchuka, S.A.; Semiletov, I.P. Freshwater transport between the Kara, Laptev, and East-Siberian seas. Sci. Rep. 2020, 10, 13041. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Frey, D.I.; Shchuka, S.A.; Tilinina, N.D.; Morozov, E.G.; Zavialov, P.O. Structure of the Freshened Surface Layer in the Kara Sea During Ice-Free Periods. J. Geophys. Res. Oceans 2021, 126, e2020JC016486. [Google Scholar] [CrossRef]
- Shiklomanov, A.I. Arctic Great Rivers Observatory. Discharge Dataset. 2020. Available online: https://arcticgreatrivers.org/data/ (accessed on 30 September 2021).
- Lammers, R.B.; Pundsack, J.W.; Shiklomanov, A.I. Variability in river temperature, discharge, and energy flux from the Russian pan-Arctic landmass. J. Geophys. Res. Biogeosci. 2007, 112, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.Z.; Yang, D.Q.; Ye, B.S.; Berezovskaya, S. Long-term open-water season stream temperature variations and changes over Lena River Basin in Siberia. Glob. Planet. Chang. 2005, 48, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Elshin, Y. River heat runoff in the European part of Russia. Meteorol. Hydrol. 1981, 9, 85–93. [Google Scholar]
- Park, H.; Yoshikawa, Y.; Yang, D.Q.; Oshima, K. Warming water in Arctic terrestrial rivers under climate change. J. Hydrometeorol. 2017, 18, 1983–1995. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrationsfrom Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data; Version 1; NASA National Snow and Ice Data Center Distributed ActiveArchive Center: Boulder, CO, USA, 1996. [Google Scholar] [CrossRef]
- Fetterer, F.K. Updated daily. In Sea Ice Index; Version 3; [Indicate Subset Used]; NSIDC—National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Kwok, R.; Rothrock, D.A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett. 2009, 36, L15501. [Google Scholar] [CrossRef] [Green Version]
- Cavalieri, D.J.; Parkinson, C.L. Arctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [Green Version]
- Matsoukas, C.; Islam, S.; Rodriguez-lturbe, I. Detrended fluctuation analysis of rainfall and streamflow time series. J. Geophys. Res. 2000, 105, 29165–29172. [Google Scholar] [CrossRef]
- Zuo, D.; Han, Y.; Xu, Z.; Li, P.; Ban, C.; Sun, W.; Pang, B.; Peng, D.; Kan, G.; Zhang, R. Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China. J. Hydrol. 2021, 600, 126532. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.F.; Wang, Z.D.; Deng, L.H.; Qu, S. Vegetation Dynamics and Their Relations with Climate Change at Seasonal Scales in the Yangtze River Basin, China. Appl. Ecol. Environ. Res. 2020, 18, 3543–3556. [Google Scholar] [CrossRef]
- Rawlins, M. Regional and Basin Streamflow Regimes and Changes: Climate Impact and Human Effect. Arct. Hydrol. Permafr. Ecosyst. 2021, 33, 159–186. [Google Scholar]
- Yang, D.Q.; Zhao, Y.Y.; Armstrong, R.; Robinson, D.; Brodzik, M. Streamflow response to seasonal snow cover mass changes over large Siberian watersheds. J. Geophys. Res.-Earth Surf. 2007, 112, F02S22. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Cheng, X.; Zheng, L.; Peng, X.Q.; Feng, W.; Peng, F.K. Recent Changes in Groundwater and Surface Water in Large Pan-Arctic River Basins. Remote Sens. 2022, 14, 607. [Google Scholar] [CrossRef]
- Alexandrov, V.T.; Martin, T.; Kolatschek, J.; Eicken, H.; Kreyscher, M.; Makshtas, A.P. Sea ice circulation in the Laptev Sea and ice export to the Arctic Ocean: Results from satellite remote sensing and numerical modelling. J. Geophys. Res. Oceans 2000, 105, 17143–17159. [Google Scholar] [CrossRef] [Green Version]
- Bareiss, J.; Eicken, H.; Helbig, A.; Martin, T. Impact of river discharge and regional climatology on the decay of sea ice in the Laptev Sea during spring and early summer. Arct. Antarct. Alp. Res. 1999, 31, 214–229. [Google Scholar] [CrossRef]
- Bareiss, J.; Goergen, K. Spatial and temporal variability of sea ice in the Laptev Sea: Analyses and review of satellite passive-microwave data and model results, 1979 to 2002. Glob. Planet. Chang. 2005, 48, 28–54. [Google Scholar] [CrossRef]
- Dmitrenko, I.A. Atmospherically forced sea-level variability in western Hudson Bay, Canada. Ocean Sci. 2021, 17, 1367–1384. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, J.; Mohan, R. Spatio-temporal change and variability of Barents-Kara sea ice, in the arctic: Ocean and atmospheric implications. Sci. Total Environ. 2020, 753, 142046. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, D. Arctic Sea Ice; Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading: Reading, UK, 2021; pp. 154–196. [Google Scholar]
- Årthun, M.; Schrum, C. Ocean surface heat flux variability in the Barents Sea. J. Mar. Syst. 2010, 83, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Smedsrud, L.H.; Sorteberg, A.; Kloster, K. Recent and future changes of the Arctic sea-ice cover. Geophys. Res. Lett. 2008, 35, L20503. [Google Scholar] [CrossRef] [Green Version]
- Alkire, M.B.; Trefry, J.H. Transport of spring floodwater from rivers under ice to the Alaskan Beaufort Sea. J. Geophys. Res. Oceans 2006, 111, C12008. [Google Scholar] [CrossRef] [Green Version]
- Overeem, I.; Nienhuis, J.H.; Piliouras, A. Ice-dominated Arctic deltas. Nat. Rev. Earth Environ. 2022, 3, 225–240. [Google Scholar] [CrossRef]
- Mu, C.C.; Zhang, F.; Chen, X.; Ge, S.M.; Mu, M.; Jia, L.; Wu, Q.B.; Zhang, T.J. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 2019, 161, 54–60. [Google Scholar] [CrossRef]
Discharge | ||||
---|---|---|---|---|
The Ob River | The Yenisei River | The Lena River | ||
SIC of the Kara Sea/Laptev Sea | May | −0.679 ** | −0.532 ** | −0.530 ** |
Jun. | 0.186 | 0.476 ** | 0.397 * | |
Jul. | 0.229 | 0.24 | 0.076 | |
Aug. | −0.259 | 0.04 | −0.235 | |
Sep. | −0.045 | 0.241 | −0.202 | |
Oct. | −0.016 | −0.426 ** | −0.392 * |
Discharge | ||||
---|---|---|---|---|
The Ob River | The Yenisei River | The Lena River | ||
SIC of the Kara Sea/Laptev Sea | Jun. | −0.407 ** | 0.026 | 0.051 |
Jul. | −0.011 | 0.276 | 0.019 | |
Aug. | −0.227 | −0.091 | −0.067 | |
Sep. | −0.033 | −0.014 | −0.198 | |
Oct. | −0.162 | 0.077 | −0.255 |
Riverine Heat | ||||
---|---|---|---|---|
The Ob River | The Yenisei River | The Lena River | ||
SIC of the Kara Sea/Laptev Sea | May | −0.625 ** | −0.654 ** | −0.663 ** |
Jun. | −0.213 | 0.113 | −0.434 ** | |
Jul. | 0.158 | 0.136 | −0.221 | |
Aug. | −0.245 | −0.092 | −0.381 * | |
Sep. | 0.004 | 0.049 | −0.384 * | |
Oct. | −0.325 * | −0.572 ** | 0 |
Riverine Heat | ||||
---|---|---|---|---|
The Ob River | The Yenisei River | The Lena River | ||
SIC of the Kara Sea/Laptev Sea | Jun. | −0.428 ** | −0.153 | −0.473 ** |
Jul. | −0.089 | −0.027 | −0.495 ** | |
Aug. | −0.138 | −0.144 | −0.568 ** | |
Sep. | −0.013 | −0.074 | −0.500 ** | |
Oct. | −0.171 | −0.316 | −0.531 ** |
Discharge | |||
---|---|---|---|
The Ob River | The Yenisei River | The Lena River | |
Sic of the Kara Sea/Laptev Sea | −0.108 | 0.150 | −0.148 |
Riverine Heat | |||
---|---|---|---|
The Ob River | The Yenisei River | The Lena River | |
Sic of the Kara Sea/Laptev Sea | 0.150 | 0.171 | −0.443 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Xu, M.; Kang, S.; Chen, J.; Yang, C.; Yang, Q. The Effects of Discharge Changes in Siberian Rivers on Arctic Sea-Ice Melting. Remote Sens. 2023, 15, 3477. https://doi.org/10.3390/rs15143477
Hu D, Xu M, Kang S, Chen J, Yang C, Yang Q. The Effects of Discharge Changes in Siberian Rivers on Arctic Sea-Ice Melting. Remote Sensing. 2023; 15(14):3477. https://doi.org/10.3390/rs15143477
Chicago/Turabian StyleHu, Didi, Min Xu, Shichang Kang, Jinlei Chen, Chengde Yang, and Qian Yang. 2023. "The Effects of Discharge Changes in Siberian Rivers on Arctic Sea-Ice Melting" Remote Sensing 15, no. 14: 3477. https://doi.org/10.3390/rs15143477
APA StyleHu, D., Xu, M., Kang, S., Chen, J., Yang, C., & Yang, Q. (2023). The Effects of Discharge Changes in Siberian Rivers on Arctic Sea-Ice Melting. Remote Sensing, 15(14), 3477. https://doi.org/10.3390/rs15143477