Ground-Based Remote Sensing of Atmospheric Water Vapor Using High-Resolution FTIR Spectrometry
Abstract
:1. Introduction
2. Instrument and Retrieval Strategy
2.1. Instrument and Site Description
2.2. The Retrieval Strategy of NIR H2O Column
2.3. The Retrieval Strategy of MIR H2O Column
2.4. Error Analysis of MIR H2O Retrieval
3. Results and Discussion
3.1. Time Series of XH2O
3.2. Time Series of H2O in the Ground Layer, the Entire Atmosphere and the Troposphere
3.3. Relationship with Surface Temperature
3.4. The Impact of Air Mass Transport on H2O
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Clim. Change 1998, 39, 667–694. [Google Scholar] [CrossRef]
- Solomon, S.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B. The physical science basis: Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Comput. Geom. 2007, 18, 95–123. [Google Scholar]
- Soden, B.; Wetherald, R.T.; Stenchikov, G.L.; Robock, A. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science 2002, 296, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Allan, R.P. The role of water vapour in Earth’s energy flows. Surv. Geophys. 2012, 33, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.W.; Batchelor, R.L.; Goldman, A.; Rinsland, C.P.; Connor, B.J.; Murcray, F.J.; Stephen, T.M.; Heuff, D.N. Ground-based nitric acid measurements at Arrival Heights, Antarctica, using solar and lunar Fourier transform infrared observations. J. Geophys. Res. 2004, 109, D18307. [Google Scholar] [CrossRef]
- Gong, M.; Cao, Y.; Wu, Q. A Neighborhood-Based Ratio Approach for Change Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 307–311. [Google Scholar] [CrossRef]
- Hakim, W.L.; Achmad, A.R.; Eom, J.; Lee, C. WLand Subsidence Measurement of Jakarta Coastal Area Using Time Series Interferometry with Sentinel-1 SAR Data. J. Coastal Res. 2020, 102, 75–81. [Google Scholar] [CrossRef]
- Kang, M.S.; Baek, J.M. SAR Image Reconstruction via Incremental Imaging with Compressive Sensing. IEEE Trans. Aerosp. Electron. Syst. 2023, 1–14. [Google Scholar] [CrossRef]
- Frankenberg, C.; Yoshimura, K.; Warneke, T.; Aben, I.; Butz, A.; Deutscher, N.; Griffith, D.; Hase, F.; Notholt, J.; Schneider, M.; et al. Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground. Science 2009, 325, 1374–1377. [Google Scholar] [CrossRef]
- Ross, R.J.; Elliott, W.P. Tropospheric water vapor climatology and trends over North America: 1973–93. J. Clim. 1996, 9, 3561–3574. [Google Scholar] [CrossRef]
- Alvarado, M.J.; Payne, V.H.; Mlawer, E.J.; Uymin, G.; Moncet, J.L. Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: Recent updates evaluated with IASI case studies. Atmos. Chem. Phys. 2013, 13, 6687–6711. [Google Scholar] [CrossRef] [Green Version]
- Ohyama, H.; Kawakami, S.; Shiomi, K.; Morino, I.; Uchino, O. Intercomparison of XH2O Data from the GOSAT TANSO-FTS (TIR and SWIR) and Ground-Based FTS Measurements: Impact of the Spatial Variability of XH2O on the Intercomparison. Remote Sens. 2017, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Ortega, I.; Buchholz, R.R.; Hall, E.G.; Hurst, D.F.; Jordan, A.F.; Hannigan, J.W. Tropospheric water vapor profiles obtained with FTIR: Comparison with balloon-borne frost point hygrometers and influence on trace gas retrievals. Atmos. Meas. Tech. 2019, 12, 873–890. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, E.; Morino, I.; Deutscher, N.M.; Yoshida, Y.; Uchino, O.; Connor, B.J.; Maziere, M.D.; Griffith, D.W.T.; Hase, F.; Heikkinen, P.; et al. Comparison of XH2O retrieved from GOSAT short-wavelength infrared spectra with observations from the TCCON network. Remote Sens. 2016, 8, 414. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Hase, F.; Blumenstock, T. Water vapour profiles by ground-based FTIR spectroscopy: Study for an optimised retrieval and its validation. Atmos. Chem. Phys. 2006, 6, 811–830. [Google Scholar] [CrossRef] [Green Version]
- Barthlott, S.; Schneider, M.; Hase, F.; Blumenstock, T.; Robinson, J. Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra. Earth. Sys. Sci. Data 2017, 9, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A. Spatiotemporal variability of water vapor investigated using lidar and FTIR vertical soundings above the Zugspitze. Atmos. Chem. Phys. 2015, 15, 3135–3148. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Eldering, A. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef] [Green Version]
- Makarova, M.V.; Serdyukov, V.I.; Arshinov, M.Y.; Voronin, B.A.; Belan, B.D.; Sinitsa, L.N.; Polovtseva, E.R.; Vasilchenko, S.S.; Kabanov, D.M. First results of ground-based Fourier Transform Infrared measurements of the H2O total column in the atmosphere over West Siberia. Int. J. Remote Sens. 2014, 35, 5637–5650. [Google Scholar]
- Virolainen, Y.A.; Timofeyev, Y.M.; Kostsov, V.S.; Lonov, D.V.; Blumenstock, T. Quality assessment of integrated water vapour measurements at the St. Petersburg site, Russia: FTIR vs. MW and GPS techniques. Atmos. Meas. Tech. 2017, 10, 4521–4536. [Google Scholar] [CrossRef] [Green Version]
- Tu, Q.; Hase, F.; Blumenstock, T.; Schneider, M.; Schneider, A.; Kivi, R.; Heikkinen, P.; Ertl, B.; Diekmann, C.; Khosrawi, F.; et al. Intercomparison of Arctic ground-based XH2O observations from COCCON, TCCON and NDACC, and application of COCCON XH2Ofor IASI and TROPOMI validation. Atmos. Meas. Tech. 2021, 14, 1993–2011. [Google Scholar] [CrossRef]
- Shan, C.; Wang, W.; Liu, C.; Guo, Y.; Jones, N. Retrieval of vertical profiles and tropospheric CO2 columns based on high-resolution FTIR over Hefei, China. Opt. Express. 2021, 29, 4958–4977. [Google Scholar] [CrossRef]
- Shan, C.; Wang, W.; Liu, C.; Sun, Y.; Hu, Q.; Xu, X.; Tian, Y.; Zhang, H.; Morino, I.; Griffith, D.W.T.; et al. Regional CO emission estimated from ground-based remote sensing at Hefei site, China. Atmos. Res. 2019, 222, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Tian, Y.; Liu, C.; Sun, Y.W.; Liu, W.; Xie, P.; Liu, J.; Xu, J.; Morino, I.; Griffith, D.W.; et al. Investigating the performance of a greenhouse gas observatory in Hefei, China. Atmos. Meas. Tech. 2017, 10, 2627–2643. [Google Scholar] [CrossRef] [Green Version]
- Hase, F.; Drouin, B.J.; Roehl, C.M.; Toon, G.C.; Wennberg, P.O.; Wunch, D.; Blymenstock, T.; Desmet, F.; Feist, D.G.; Heikkinen, P.; et al. Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring. Atmos. Meas. Tech. 2013, 6, 3527–3537. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, C.; Palm, M.; Vigouroux, J.; Hu, Q.; Jones, N.; Wang, W.; Zhang, W. Ozone seasonal evolution and photochemical production regime in the polluted troposphere in eastern China derived from high-resolution Fourier transform spectrometry (FTS) observations. Atmos. Chem. Phys. 2018, 18, 14569–14583. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Toon, G.C.; Wennberg, P.O.; Wofsy, S.C.; Stephens, B.B. Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmos. Meas. Tech. 2010, 3, 1351–1362. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Miyamoto, Y.; Morino, I.; Machida, T.; Nagahama, T. Aircraft measurements of carbon dioxide and methane for the calibration of ground-based high-resolution Fourier Transform Spectrometers and a comparison to GOSAT data measured over Tsukuba and Moshiri. Atmos. Meas. Tech. 2012, 5, 1843–1871. [Google Scholar] [CrossRef] [Green Version]
- Borsdorff, T.; Hu, H.; Hasekamp, O.; Sussmann, R.; Rettinger, M.; Hase, F.; Gross, J.; Schneider, M.; Garcia, O. Mapping carbon monoxide pollution from space down to city scales with daily global coverage. Atmos. Meas. Tech. 2018, 11, 5507–5518. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year Reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boidon, V.; Brown, L.R.; Campargue, A.; Champion, J.P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Toon, G.C.; Blavier, J.F.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.; Sherlock, V.; Wennberg, P.O. Thetotal carbon column observing network. Philos. Trans. A Math. Phys. Eng. Sci. 2011, 369, 2087–2112. [Google Scholar]
- Zhou, M.; Dils, B.; Wang, P.; Detmers, R.; Maziere, M.D. Validation of TANSO-FTS/GOSAT XCO2 and XCH4 glint mode retrievals using TCCON data from near-ocean sites. Atmos. Meas. Tech. 2016, 9, 1415–1430. [Google Scholar] [CrossRef] [Green Version]
- Pougatchev, N.S.; Connor, B.J.; Rinsland, C.P. Infrared measurements of the ozone vertical distribution above Kitt Peak. J. Geophys. Res. Atmos. 1995, 100, 16689–16697. [Google Scholar] [CrossRef] [Green Version]
- Timofeyev, Y.; Virolainen, Y.; Makarova, M.; Poberovsky, A.; Polyakov, A.; Lomov, D.; Osipov, S.; Lmhasin, H. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia). J. Mol. Spectrosc. 2016, 323, 2–14. [Google Scholar] [CrossRef]
- García, O.E.; Schneider, M.; Sepúlveda, E. Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory–overview and long-term comparison to other techniques. Atmos. Chem. Phys. 2021, 21, 15519–15554. [Google Scholar] [CrossRef]
- Sorrel, M. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Benner, A.C.; Bernath, D.; Birk, P.F.; Bizzocchi, M.; Boudon, L.; Brown, V.; Campargue, L.R. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.D.; Connor, B.J. Intercomparison of remote sounding instruments. J. Geophys. Res. Atmos. 2003, 108, 4116–4229. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Wang, W.; Liu, C.; Shan, C.; Xie, Y.; Wu, P.; Zhu, Q.; Zhou, M.; Mahieu, E. Retrieval of atmospheric CFC-11 and CFC-12 from high-resolution FTIR observations at Hefei and comparisons with other independent datasets. Atmos. Meas. Tech. 2022, 15, 6739–6754. [Google Scholar] [CrossRef]
- Schneider, M.; Wiegele, A.; Barthlott, S.; González, Y.; Christner, E.; Dyroff, C.; García, O.E.; Hase, F.; Blumenstock, T.; Sepúlveda, E. Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observations of tropospheric { H2O, δD} pairs–A review. Atmos. Meas. Tech. 2016, 9, 2845–2875. [Google Scholar] [CrossRef] [Green Version]
- García, O.E.; Schneider, M.; Redondas, A.; González, Y.; Hase, F.; Blumenstock, T.; Sepúlveda, E. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry. Atmos. Meas. Tech. 2012, 5, 2917–2931. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Hase, F.; Blavier, J.F.; Toon, G.C.; Leblanc, T. An empirical study on the importance of a speed-dependent Voigt line shape model for tropospheric water vapor profile remote sensing. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 465–474. [Google Scholar] [CrossRef]
- Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA. Atmos. Meas. Tech. 2012, 5, 3007–3027. [Google Scholar] [CrossRef] [Green Version]
- Kiel, M.; Hase, F.; Blumenstock, T.; Kirner, O. Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe. Atmos. Meas. Tech. 2016, 9, 2223–2239. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.; Bovensmann, H.; Buchwitz, M.; Burrows, J.P.; Connor, J.B.; Deutscher, N.M.; Griffith, D.W.T.; Heymann, J.; Keppel-Aleks, G.; Messerschmidt, J. Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results. J. Geophys. Res. Atmos. 2011, 116, D04301. [Google Scholar] [CrossRef] [Green Version]
- Noone, D. Pairing measurements of the water vapor isotope ratio with humidity to deduce atmospheric moistening and dehydration in the tropical midtroposphere. J. Clim. 2012, 25, 4476–4494. [Google Scholar] [CrossRef]
- Vogelmann, H.; Sussmann, R.; Trickl, T.; Borsdorff, T. Intercomparison of atmospheric water vapor soundings from the differential absorption lidar (DIAL) and the solar FTIR system on Mt. Zugspitze. Atmos. Meas. Tech. 2011, 4, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Shan, C.; Zhang, H.; Wang, W.; Liu, C.; Xie, Y.; Hu, Q.; Jones, N. Retrieval of Stratospheric NO3 and HCl Based on Ground-Based High-Resolution Fourier Transform Spectroscopy. Remote Sens. 2021, 13, 2159. [Google Scholar] [CrossRef]
- Shan, C.; Wang, W.; Xie, Y.; Wu, P.; Xu, J.; Zeng, X.; Zha, L.; Zhu, Q.; Sun, Y.; Hu, Q.; et al. Observations of atmospheric CO2 and CO based on in-situ and ground-based remote sensing measurements at Hefei site, China. Sci. Total Environ. 2022, 851, 158188. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.; Zhang, W.; Bai, J. Spatio-Temporal Variations of Precipitable Water Vapor and Horizontal Tropospheric Gradients from GPS during Typhoon Lekima. Remote Sens. 2021, 13, 4082. [Google Scholar] [CrossRef]
- Pistone, K.; Zuidema, P.; Wood, R.; Diamond, M.; Shinozuka, Y. Exploring the elevated water vapor signal associated with the free-tropospheric biomass burning plume over the southeast Atlantic Ocean. Atmos. Chem. Phys. 2021, 21, 9643–9668. [Google Scholar] [CrossRef]
- King, M.D.; Menzel, W.P.; Kaufman, Y.J.; Tanré, D.; Hubanks, P.A. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens. 2003, 41, 442–458. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Zhang, Y.; Ma, W.; Ma, H.; Feng, J.; Qi, Y.; Yang, X.; Fu, Q.; Liu, C. Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze River Delta and East China Sea and Their Potential Environmental Influence. Environ. Sci. Technol. 2016, 50, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Szekely, G.J.; Rizzo, M.L. Hierarchical Clustering via Joint Between-Within Distances: Extending Ward’s Minimum Variance Method. J. Classif. 2005, 22, 151–183. [Google Scholar] [CrossRef]
- Siroris, A.; Bottenheim, J.W. Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. J. Geophys. Res. Atmos. 1995, 100, 2867–2881. [Google Scholar] [CrossRef]
- Brankov, E.; Rao, S.T.; Porter, P.S. A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants. Atmos. Environ. 1998, 32, 1525–1534. [Google Scholar] [CrossRef]
Instrument Parametric | NIR Spectra | MIR Spectra |
---|---|---|
Spectral range | 4000–11,000 cm−1 | 600–4500 cm−1 |
Spectral resolution | 0.02 cm−1 | 0.005 cm−1 |
Optical path difference | 45 cm | 180 cm |
Beam splitter | CaF2 | KBr |
Detector | InGaAs | InSb/MCT |
ILS | HCl | HBr |
Center of Spectral | Interfering Gas | ||
---|---|---|---|
H2O | 4571.75 | 2.50 | , , |
4611.05 | 2.20 | , , , | |
4699.55 | 4.00 | , , | |
6076.90 | 3.85 | , , , HDO | |
6125.85 | 1.45 | , , , HDO | |
6255.95 | 3.60 | , , HDO | |
6301.35 | 7.90 | , , HDO | |
6392.45 | 3.10 | , HDO | |
6401.15 | 1.15 | , , HDO | |
6469.60 | 3.50 | , , HDO |
Species | H2O |
---|---|
Retrieval software | SFIT4 V0.9.4.4 |
Spectroscopy | HITRAN 2012 |
Temperature, pressure and H2O profiles | NECP |
A priori profiles of retrieved species | WACCM v6 |
Spectral windows () | 2732.28–2732.82 |
2818.80–2820.13 | |
2878.55–2880.65 | |
2892.83–2893.25 | |
Interfering gases | CH4, N2O, O3, HCl |
Parameter | Random Uncertainty | Systematic Uncertainty |
---|---|---|
Temperature profile | 3K | 3K |
Solar zenith angle | 0.025° | 0.025° |
Solar line shift | 0.005 | 0.005 |
Solar line strength | 0.1% | 0.1% |
Field of view | 0.01 | 0.01 |
Line intensity | - | 1% |
Line T broadening | - | 10% |
Line P broadening | - | 3% |
Spectroscopic parameters | 2% | 2% |
Parameter | Random Error/% | Systematic Error/% |
---|---|---|
Smoothing error | 0.026 | - |
Measurement error | 0.05 | - |
Temperature profile | 6.43 | 1.08 |
Solar zenith angle | 0.049 | 0.049 |
Zero level shift | 0.72 | 0.72 |
Field of view | 0.017 | 0.017 |
Line intensity | - | 0.083 |
Line T broadening | 0.023 | 0.023 |
Line P broadening | 0.964 | 0.964 |
Spectroscopic parameters | 0.968 | 0.968 |
Subtotal error | 6.49 | 1.55 |
Total error | 6.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.; Shan, C.; Liu, C.; Xie, Y.; Wang, W.; Zhu, Q.; Zeng, X.; Liang, B. Ground-Based Remote Sensing of Atmospheric Water Vapor Using High-Resolution FTIR Spectrometry. Remote Sens. 2023, 15, 3484. https://doi.org/10.3390/rs15143484
Wu P, Shan C, Liu C, Xie Y, Wang W, Zhu Q, Zeng X, Liang B. Ground-Based Remote Sensing of Atmospheric Water Vapor Using High-Resolution FTIR Spectrometry. Remote Sensing. 2023; 15(14):3484. https://doi.org/10.3390/rs15143484
Chicago/Turabian StyleWu, Peng, Changgong Shan, Chen Liu, Yu Xie, Wei Wang, Qianqian Zhu, Xiangyu Zeng, and Bin Liang. 2023. "Ground-Based Remote Sensing of Atmospheric Water Vapor Using High-Resolution FTIR Spectrometry" Remote Sensing 15, no. 14: 3484. https://doi.org/10.3390/rs15143484
APA StyleWu, P., Shan, C., Liu, C., Xie, Y., Wang, W., Zhu, Q., Zeng, X., & Liang, B. (2023). Ground-Based Remote Sensing of Atmospheric Water Vapor Using High-Resolution FTIR Spectrometry. Remote Sensing, 15(14), 3484. https://doi.org/10.3390/rs15143484