Color-Coated Steel Sheet Roof Building Extraction from External Environment of High-Speed Rail Based on High-Resolution Remote Sensing Images
Abstract
:1. Introduction
- We propose a deformation-aware feature enhancement and alignment network (DFEANet) to realize intelligent CCSS roof building identification in the external environment of high-speed rails.
- A deformation-aware feature enhancement module (DFEM) is proposed to solve the problem associated with the multiple scales and irregular shapes of CCSS roof buildings. It adjusts the spatial sampling locations of convolutional layers according to the input feature and uncovers implicit spectral features, thus separating these features from the complex background.
- A feature alignment and gated fusion module (FAGM) is proposed to suppress interference from the background and maintain structural integrity and details. It mitigates the spatial misalignment between adjacent semantic feature maps and guides the fusion process, thereby reducing the introduction of redundant information.
- High-resolution remote sensing images collected from the SuperView-1 satellite are used to evaluate the effectiveness of DFEANet. Compared with six classical and state-of-the-art (SOTA) deep-learning methods, DFEANet achieved competitive performance.
2. Related Work
2.1. Deep Learning Based Researches on CCSS Roof Buildings
2.2. Multi-Scale Feature Extraction and Fusion
3. Data and Study Area
3.1. Study Area
3.2. Data
3.3. Self-Annotated CCSS Roof Building Dataset
4. Methodology
4.1. Model Overview
4.2. Deformable Convolution
4.3. Deformation-Aware Feature Enhancement Module
4.4. Feature Alignment and Gated Fusion Module
4.5. Segmentation Head
4.6. Loss Function
5. Experiments and Analysis
5.1. Evaluation Metrics
5.2. Experimental Settings
5.3. Results and Analysis
5.3.1. CCSS Roof Buildings of the External Environment of the Beijing–Zhangjiakou High-Speed Railway
5.3.2. Comparisons with SOTA Methods
5.4. Ablation Study
5.4.1. Effect of Deformable Convolutions in DFE
5.4.2. Visualization of FAGM
5.4.3. Comparison of Different Multi-Level Feature Fusion Methods
5.5. Complexity of DFEANet
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Wang, Y.; Zhao, C. How do high-speed rails influence city carbon emissions? Energy 2023, 265, 126108. [Google Scholar] [CrossRef]
- Tang, R.; De Donato, L.; Bešinović, N.; Flammini, F.; Goverde, R.M.P.; Lin, Z.; Liu, R.; Tang, T.; Vittorini, V.; Wang, Z. A literature review of Artificial Intelligence applications in railway systems. Transp. Res. Part C Emerg. Technol. 2022, 140, 103679. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, C.; Huang, Y.; Sheng, W.; Wang, Z. Evolutionary ensemble generative adversarial learning for identifying terrorists among high-speed rail passengers. Expert Syst. Appl. 2022, 210, 118430. [Google Scholar] [CrossRef]
- Pan, X.; Liu, S. Modeling travel choice behavior with the concept of image: A case study of college students’ choice of homecoming train trips during the Spring Festival travel rush in China. Transp. Res. Part A Policy Pract. 2022, 155, 247–258. [Google Scholar] [CrossRef]
- Li, T.; Rong, L. A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China. Transp. Res. Part A Policy Pract. 2020, 132, 666–681. [Google Scholar] [CrossRef]
- Lu, C.; Cai, C. Overview on safety management and maintenance of high-speed railway in China. Transp. Geotech. 2020, 25, 100397. [Google Scholar] [CrossRef]
- Cao, Y.; An, Y.; Su, S.; Xie, G.; Sun, Y. A statistical study of railway safety in China and Japan 1990–2020. Accid. Anal. Prev. 2022, 175, 106764. [Google Scholar] [CrossRef]
- Ren, T.; Liu, Y.; Gao, Z.; Qiao, Z.; Li, Y.; Li, F.; Yu, J.; Zhang, Q. Height Deviation Detection of Rail Bearing Platform on High-Speed Railway Track Slab Based on Digital Image Correlation. Opt. Lasers Eng. 2023, 160, 107238. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Z.; Tao, Y.; Hu, H. Quantitative risk assessment of railway intrusions with text mining and fuzzy Rule-Based Bow-Tie model. Adv. Eng. Inform. 2022, 54, 101726. [Google Scholar] [CrossRef]
- Hoerbinger, S.; Obriejetan, M.; Rauch, H.P.; Immitzer, M. Assessment of safety-relevant woody vegetation structures along railway corridors. Ecol. Eng. 2020, 158, 106048. [Google Scholar] [CrossRef]
- Wang, H.; Tian, Y.; Yin, H. Correlation Analysis of External Environment Risk Factors for High-Speed Railway Derailment Based on Unstructured Data. J. Adv. Transp. 2021, 2021, 6980617. [Google Scholar] [CrossRef]
- Meng, H.; Wang, S.; Gao, C.; Liu, F. Research on Recognition Method of Railway Perimeter Intrusions Based on Φ-OTDR Optical Fiber Sensing Technology. IEEE Sens. J. 2021, 21, 9852–9859. [Google Scholar] [CrossRef]
- Pan, X.; Yang, L.; Sun, X.; Yao, J.; Guo, J. Research on the Extraction of Hazard Sources along High-Speed Railways from High-Resolution Remote Sensing Images Based on TE-ResUNet. Sensors 2022, 22, 3784. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Gaber, A.M.; Nabey, B.A.A.-E.; Khamis, E.F.; Abdelattef, O.A.; Aglan, H.; Ludwick, A.G. Influence of natural inhibitor, pigment and extender on corrosion of polymer coated steel. Prog. Org. Coat. 2010, 69, 402–409. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, X.; Tang, L. Color-Coating Scheduling with a Multiobjective Evolutionary Algorithm Based on Decomposition and Dynamic Local Search. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1590–1601. [Google Scholar] [CrossRef]
- Li, Y. Fire Safety Distance Analysis of Color Steel Sandwich Panel Houses in Different Meteorological Conditions. Master’s Thesis, Chongqing University, Chongqing, China, 2016. [Google Scholar]
- Guo, Z.; Yang, D.; Chen, J.; Cui, X. A new index for mapping the ‘blue steel tile’ roof dominated industrial zone from Landsat imagery. Remote Sens. Lett. 2018, 9, 578–586. [Google Scholar] [CrossRef]
- Samat, A.; Gamba, P.; Wang, W.; Luo, J.; Li, E.; Liu, S.; Du, P.; Abuduwaili, J. Mapping Blue and Red Color-Coated Steel Sheet Roof Buildings over China Using Sentinel-2A/B MSIL2A Images. Remote Sens. 2022, 14, 230. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, G.; Ding, L.; Du, M.; Yang, S. Analysis and Research on Temporal and Spatial Variation of Color Steel Tile Roof of Munyaka Region in Kenya, Africa. Sustainability 2022, 14, 14886. [Google Scholar] [CrossRef]
- Xue, J.; Xu, H.; Yang, H.; Wang, B.; Wu, P.; Choi, J.; Cai, L.; Wu, Y. Multi-Feature Enhanced Building Change Detection Based on Semantic Information Guidance. Remote Sens. 2021, 13, 4171. [Google Scholar] [CrossRef]
- Bai, B.; Fu, W.; Lu, T.; Li, S. Edge-Guided Recurrent Convolutional Neural Network for Multitemporal Remote Sensing Image Building Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5610613. [Google Scholar] [CrossRef]
- Zhang, L.-B.; Zhang, J.; Ma, J.; Jia, X. SC-PNN: Saliency Cascade Convolutional Neural Network for Pansharpening. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9697–9715. [Google Scholar] [CrossRef]
- Yang, K.; Sun, H.; Zou, C.; Lu, X. Cross-Attention Spectral–Spatial Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5518714. [Google Scholar] [CrossRef]
- Luo, F.; Zhou, T.; Liu, J.; Guo, T.; Gong, X.; Ren, J. Multiscale Diff-Changed Feature Fusion Network for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5502713. [Google Scholar] [CrossRef]
- Duan, Y.; Luo, F.; Fu, M.; Niu, Y.; Gong, X. Classification via Structure-Preserved Hypergraph Convolution Network for Hyperspectral Image. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5507113. [Google Scholar] [CrossRef]
- Guo, T.; Wang, R.; Luo, F.; Gong, X.; Zhang, L.; Gao, X. Dual-View Spectral and Global Spatial Feature Fusion Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5512913. [Google Scholar] [CrossRef]
- Hou, D.; Wang, S.; Xing, H. A novel benchmark dataset of color steel sheds for remote sensing image retrieval. Earth Sci. Inform. 2021, 14, 809–818. [Google Scholar] [CrossRef]
- Yu, J.; Shun, L. Detection Method of Illegal Building Based on YOLOv5. Comput. Eng. Appl. 2021, 57, 236–244. [Google Scholar]
- Sun, M.; Deng, Y.; Li, M.; Jiang, H.; Huang, H.; Liao, W.; Liu, Y.; Yang, J.; Li, Y. Extraction and Analysis of Blue Steel Roofs Information Based on CNN Using Gaofen-2 Imageries. Sensors 2020, 20, 4655. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Wang, L.; Zhong, Y.; Guan, Q.; Lu, X.; Zhang, L.; Li, D. A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 353–365. [Google Scholar] [CrossRef]
- Zheng, X.; Huan, L.; Xia, G.; Gong, J. Parsing very high-resolution urban scene images by learning deep ConvNets with edge-aware loss. ISPRS J. Photogramm. Remote Sens. 2020, 170, 15–28. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, X.; Liao, X.; Zhuang, D. B-FGC-Net: A Building Extraction Network from High Resolution Remote Sensing Imagery. Remote Sens. 2022, 14, 269. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Ding, H.; Jiang, X.; Shuai, B.; Liu, A.Q.; Wang, G. Context Contrasted Feature and Gated Multi-scale Aggregation for Scene Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2393–2402. [Google Scholar]
- Li, X.; Zhao, H.; Han, L.; Tong, Y.; Tan, S.; Yang, K. Gated Fully Fusion for Semantic Segmentation. In Proceedings of the AAAI, 2020, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Xu, L.; Li, Y.; Xu, J.; Guo, L. Gated Spatial Memory and Centroid-Aware Network for Building Instance Extraction. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4402214. [Google Scholar] [CrossRef]
- Wang, T.Y. The Intelligent Beijing–Zhangjiakou High-Speed Railway. Engineering 2021, 7, 1665–1672. [Google Scholar] [CrossRef]
- Available online: http://en.spacewillinfo.com/english/Satellite/SuperView_1/#main (accessed on 10 May 2023).
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable ConvNets V2: More Deformable, Better Results. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9300–9308. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. In Proceedings of the 2014 IEEE International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014; pp. 1–10. [Google Scholar]
- Li, X.; You, A.; Zhu, Z.; Zhao, H.; Yang, M.; Yang, K.; Tong, Y. Semantic Flow for Fast and Accurate Scene Parsing. arXiv 2020, arXiv:2002.10120. [Google Scholar]
- Huang, Z.; Wei, Y.; Wang, X.; Shi, H.; Liu, W.; Huang, T.S. AlignSeg: Feature-Aligned Segmentation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rijsbergen, C.J. Information Retrieval, 2nd ed.; Butterworths: Waltham, MA, USA, 1979. [Google Scholar]
- Manning, C.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Huang, X. A full-level fused cross-task transfer learning method for building change detection using noise-robust pretrained networks on crowdsourced labels. Remote Sens. Environ. 2023, 284, 113371. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, S.; Barnes, B.B.; Xie, Y.; Wang, M.; Cannizzaro, J.P.; English, D.C. Mapping and quantifying pelagic Sargassum in the Atlantic Ocean using multi-band medium-resolution satellite data and deep learning. Remote Sens. Environ. 2023, 289, 113515. [Google Scholar] [CrossRef]
- Hertel, V.; Chow, C.; Wani, O.; Wieland, M.; Martinis, S. Probabilistic SAR-based water segmentation with adapted Bayesian convolutional neural network. Remote Sens. Environ. 2023, 285, 113388. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the NeurIPS, 2019, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the ECCV, 2018, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3349–3364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Q.; Li, J.; Li, C.; Guo, H.; Huang, R. Fully Attentional Network for Semantic Segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, 36, Vancouver, BC, Canada, 22 February–1 March 2022; pp. 2280–2288. [Google Scholar]
Orbit | Type | Sun-synchronous |
Altitude | 530 km | |
Design life | 8 years | |
Spectral bands | Blue | 450–520 nm |
Green | 520–590 nm | |
Red | 630–690 nm | |
NIR | 770–890 nm | |
PAN | 450–890 nm | |
Swath width | 12 km | |
Ground sample distance | PAN | 0.5 m |
MS | 2 m | |
Dynamic range | 11 bit | |
Revisit time | 2 days by twin satellites |
Method | IoU (%) | Recall (%) | Precision (%) | F1-Score (%) |
---|---|---|---|---|
PSPNet | 70.88 | 77 | 83.47 | 80.10 |
FLANet | 77.63 | 84.40 | 87.33 | 85.84 |
SegNet | 81.78 | 87.91 | 90.12 | 89 |
HRNet v2 | 82.80 | 87.40 | 92.35 | 89.81 |
U-Net | 84.24 | 87.09 | 95.19 | 90.96 |
DeepLab v3+ | 84.64 | 87.98 | 94.59 | 91.16 |
Ours | 86.48 | 91.46 | 93.05 | 92.25 |
Method | Baseline | D | F | IoU (%) |
---|---|---|---|---|
Description | ResNet50 + FPN | DFEM | FAGM | |
Ablation 1 | √ | 80.62 | ||
Ablation 2 | √ | √ | 82.86 | |
Ablation 3 | √ | √ | 82.31 | |
Ablation 4 | √ | √ | √ | 86.48 |
Method | IoU (%) | Recall (%) | Precision (%) | F1-Score (%) |
---|---|---|---|---|
Without Deform | 82.29 | 89.67 | 89.05 | 89.36 |
Level Deform | 83.15 | 90.61 | 89.35 | 89.98 |
Spatial Deform | 83.49 | 90.61 | 89.83 | 90.22 |
Both | 86.48 | 91.46 | 93.05 | 92.25 |
Method | IoU (%) | Recall (%) | Precision (%) | F1-Score (%) |
---|---|---|---|---|
Pixel Addition | 82.86 | 86.43 | 93.78 | 89.96 |
Channel Concatenate | 84.57 | 89.98 | 91.98 | 90.97 |
FAF | 85.61 | 90.92 | 92.44 | 91.67 |
FAGM | 86.48 | 91.46 | 93.05 | 92.25 |
Method | Backbone | IoU (%) | Parameters (M) | FLOPs (G) |
---|---|---|---|---|
PSPNet | ResNet 50 | 70.88 | 46.36 | 27.47 |
FLANet | ResNet 50 | 77.63 | 69.99 | 451.37 |
SegNet | - | 81.78 | 29.44 | 160.68 |
HRNet v2 | - | 82.80 | 65.85 | 93.83 |
U-Net | - | 84.24 | 34.53 | 262.106 |
DeepLab v3+ | ResNet 50 | 84.64 | 63.26 | 157.85 |
Ours | ResNet 50 | 86.48 | 27.60 | 44.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Jin, W.; Qiu, S.; Zuo, D.; Liu, J. Color-Coated Steel Sheet Roof Building Extraction from External Environment of High-Speed Rail Based on High-Resolution Remote Sensing Images. Remote Sens. 2023, 15, 3933. https://doi.org/10.3390/rs15163933
Li Y, Jin W, Qiu S, Zuo D, Liu J. Color-Coated Steel Sheet Roof Building Extraction from External Environment of High-Speed Rail Based on High-Resolution Remote Sensing Images. Remote Sensing. 2023; 15(16):3933. https://doi.org/10.3390/rs15163933
Chicago/Turabian StyleLi, Yingjie, Weiqi Jin, Su Qiu, Dongsheng Zuo, and Jun Liu. 2023. "Color-Coated Steel Sheet Roof Building Extraction from External Environment of High-Speed Rail Based on High-Resolution Remote Sensing Images" Remote Sensing 15, no. 16: 3933. https://doi.org/10.3390/rs15163933
APA StyleLi, Y., Jin, W., Qiu, S., Zuo, D., & Liu, J. (2023). Color-Coated Steel Sheet Roof Building Extraction from External Environment of High-Speed Rail Based on High-Resolution Remote Sensing Images. Remote Sensing, 15(16), 3933. https://doi.org/10.3390/rs15163933