Multi-Scale Response Analysis and Displacement Prediction of Landslides Using Deep Learning with JTFA: A Case Study in the Three Gorges Reservoir, China
Abstract
:1. Introduction
2. Methodology
2.1. Joint Time-Frequency Analysis (JTFA)
2.1.1. Grey Wolf Optimized Variational Mode Decomposition (GWO-VMD)
Algorithm 1 The GWO-VMD |
Initialize (5) repeat (6) Update : (7) for do Update : (8) (9) (10) (11) end for until . |
2.1.2. Wavelet Analysis (WA)
2.2. Deep Learning Forecasting Model
2.2.1. Gated Recurrent Unit (GRU)
2.2.2. Double Exponential Smoothing (DES)
2.2.3. Evaluation Indicators
3. Multi-Scale Response Analysis with JTFA
3.1. Pre-Processing of the Collected Data Sequence
3.2. Pre-Selection of the Impact Factors
3.3. Multi-Scale Response Analysis
3.3.1. Analysis of CWT
3.3.2. Analysis of XWT and WTC
4. Model Forecast and Discussion
4.1. Training Dataset and Parameter Setting
4.2. Prediction Results and Analyses
4.2.1. Displacement Components Prediction
4.2.2. Cumulative Displacement Prediction
4.2.3. Comparative Experiments and Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, Y.; Huang, B.; Wang, W.; Wei, Y.; Ma, X.; Ma, F.; Zhao, C. Reservoir-Induced Landslides and Risk Control in Three Gorges Project on Yangtze River, China. J. Rock Mech. Geotech. Eng. 2016, 8, 577–595. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of Time Series Analysis and PSO–SVM Model in Predicting the Bazimen Landslide in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [Google Scholar] [CrossRef]
- Tang, H.; Wasowski, J.; Juang, C.H. Geohazards in the Three Gorges Reservoir Area, China–Lessons Learned from Decades of Research. Eng. Geol. 2019, 261, 105267. [Google Scholar] [CrossRef]
- Wang, F.; Li, T. (Eds.) Landslide Disaster Mitigation in Three Gorges Reservoir, China; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-642-00131-4. [Google Scholar]
- Wang, F.-W.; Zhang, Y.-M.; Huo, Z.-T.; Matsumoto, T.; Huang, B.-L. The July 14, 2003 Qianjiangping Landslide, Three Gorges Reservoir, China. Landslides 2004, 1, 157–162. [Google Scholar] [CrossRef]
- Schulte, J.A. Wavelet Analysis for Non-Stationary, Nonlinear Time Series. Nonlin. Process. Geophys. 2016, 23, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Rhif, M.; Ben Abbes, A.; Farah, I.R.; Martínez, B.; Sang, Y. Wavelet Transform Application for/in Non-Stationary Time-Series Analysis: A Review. Appl. Sci. 2019, 9, 1345. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Huang, J.; Jiang, S.; Zhou, C. Landslide Displacement Prediction Based on Multivariate Chaotic Model and Extreme Learning Machine. Eng. Geol. 2017, 218, 173–186. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, Q.; Lu, Z.; Luo, H.; Liao, L.; Dong, X. Modelling and Predicting Landslide Displacements and Uncertainties by Multiple Machine-Learning Algorithms: Application to Baishuihe Landslide in Three Gorges Reservoir, China. Geomat. Nat. Hazards Risk 2021, 12, 741–762. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Tang, L.; Gu, X.; Wang, L.; Wang, L. Displacement Prediction of Jiuxianping Landslide Using Gated Recurrent Unit (GRU) Networks. Acta Geotech. 2022, 17, 1367–1382. [Google Scholar] [CrossRef]
- He, B.; Chang, J.; Wang, Y.; Wang, Y.; Zhou, S.; Chen, C. Spatio-Temporal Evolution and Non-Stationary Characteristics of Meteorological Drought in Inland Arid Areas. Ecol. Indic. 2021, 126, 107644. [Google Scholar] [CrossRef]
- Su, L.; Miao, C.; Duan, Q.; Lei, X.; Li, H. Multiple-Wavelet Coherence of World’s Large Rivers with Meteorological Factors and Ocean Signals. J. Geophys. Res. Atmos. 2019, 124, 4932–4954. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Isham, M.F.; Leong, M.S.; Lim, M.H.; Ahmad, Z.A. Variational Mode Decomposition: Mode Determination Method for Rotating Machinery Diagnosis. J. Vibroengineering 2018, 20, 2604–2621. [Google Scholar] [CrossRef] [Green Version]
- Haghshenas, S.S.; Haghshenas, S.S.; Geem, Z.W.; Kim, T.-H.; Mikaeil, R.; Pugliese, L.; Troncone, A. Application of Harmony Search Algorithm to Slope Stability Analysis. Land 2021, 10, 1250. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Tang, H.; Li, C.; Su, X.; An, P.; Sun, S. Centrifuge Modelling of Landslides and Landslide Hazard Mitigation: A Review. Geosci. Front. 2023, 14, 101493. [Google Scholar] [CrossRef]
- Olsen, J.; Anderson, N.J.; Knudsen, M.F. Variability of the North Atlantic Oscillation over the Past 5200 Years. Nat. Geosci 2012, 5, 808–812. [Google Scholar] [CrossRef]
- Gan, T.Y.; Gobena, A.K.; Wang, Q. Precipitation of Southwestern Canada: Wavelet, Scaling, Multifractal Analysis, and Teleconnection to Climate Anomalies. J. Geophys. Res. Atmos. 2007, 112, D10110. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal Changes in the ENSO–Monsoon System. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Amer. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlin. Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Tomás, R.; Li, Z.; Lopez-Sanchez, J.M.; Liu, P.; Singleton, A. Using Wavelet Tools to Analyse Seasonal Variations from InSAR Time-Series Data: A Case Study of the Huangtupo Landslide. Landslides 2016, 13, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wu, S.; Zhang, G.; Zheng, W.; Liu, C.; He, C.; Liu, Z.; Guo, X.; Zhang, H. Landslide Displacement Prediction Using Kinematics-Based Random Forests Method: A Case Study in Jinping Reservoir Area, China. Eng. Geol. 2021, 283, 105975. [Google Scholar] [CrossRef]
- Fang, K.; Dong, A.; Tang, H.; An, P.; Zhang, B.; Miao, M.; Ding, B.; Hu, X. Comprehensive Assessment of the Performance of a Multismartphone Measurement System for Landslide Model Test. Landslides 2023, 20, 845–864. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, H.; Xu, Q.; Lu, Z.; Liao, L.; Li, H.; Hao, L. A Graph Convolutional Incorporating GRU Network for Landslide Displacement Forecasting Based on Spatiotemporal Analysis of GNSS Observations. Remote Sens. 2022, 14, 1016. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, C.; He, M.; Dong, M.; Zhang, G.; Zhang, F. Failure Mechanism and Long Short-Term Memory Neural Network Model for Landslide Risk Prediction. Remote Sens. 2022, 14, 166. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Wang, B.; Wang, J. Energy Futures and Spots Prices Forecasting by Hybrid SW-GRU with EMD and Error Evaluation. Energy Econ. 2020, 90, 104827. [Google Scholar] [CrossRef]
- Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-Term Runoff Prediction with GRU and LSTM Networks without Requiring Time Step Optimization during Sample Generation. J. Hydrol. 2020, 589, 125188. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Mob. Comput. Commun. Rev. 1997, 5, 53. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Zhu, X.; Xu, Q.; Tang, M.; Li, H.; Liu, F. A Hybrid Machine Learning and Computing Model for Forecasting Displacement of Multifactor-Induced Landslides. Neural Comput. Appl. 2018, 30, 3825–3835. [Google Scholar] [CrossRef]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Multiple Neural Networks Switched Prediction for Landslide Displacement. Eng. Geol. 2015, 186, 91–99. [Google Scholar] [CrossRef]
- Li, X.; Zhang, N.X.; Liao, Q.L.; Wu, J. Analysis on Hydrodynamic Field Influenced by Combination of Rainfall and Reservoir Level Fluctuation. Chin. J. Rock Mech. Eng. 2004, 23, 3714–3720. [Google Scholar]
- Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time Series Analysis and Long Short-Term Memory Neural Network to Predict Landslide Displacement. Landslides 2019, 16, 677–694. [Google Scholar] [CrossRef]
- Wu, Q.; Tang, H.M.; Wang, L.Q.; Lin, Z.H. Analytic Solutions for Phreatic Line in Reservoir Slope with Inclined Impervious Bed under Rainfall and Reservoir Water Level Fluctuation. Rock Soil Mech. 2009, 30, 3025–3031. [Google Scholar]
- Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide Displacement Prediction Based on Variational Mode Decomposition and WA-GWO-BP Model. Landslides 2020, 17, 567–583. [Google Scholar] [CrossRef]
- Fang, Z.; Hang, D.; Xinyi, Z. Rainfall Regime in Three Gorges Area in China and the Control Factors: Rainfall regime in three gorges area in china. Int. J. Climatol. 2010, 30, 1396–1406. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, Y.; Zhang, J.; Zhao, C. Correlation Analysis between Haze and GNSS Tropospheric Delay Based on Coherent Wavelet. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 2131–2138. [Google Scholar]
- Li, L.; Wu, Y.; Miao, F.; Liao, K.; Zhang, L. Displacement Prediction of Landslides Based on Variational Mode Decomposition and GWO-MIC-SVR Model. Chin. J. Rock Mech. Eng. 2018, 37, 1395–1406. [Google Scholar]
- Feng, F.; Wu, X.; Niu, R.; Xu, S. A Landslide Deformation Analysis Method Using V/S and LSTM. Landslide Deform. Anal. Method. 2019, 44, 784–790. [Google Scholar]
- Huang, F.; Yin, K.; Zhang, G.; Gui, L.; Yang, B.; Liu, L. Landslide Displacement Prediction Using Discrete Wavelet Transform and Extreme Learning Machine Based on Chaos Theory. Env. Earth Sci. 2016, 75, 1376. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Yang, B.; Li, X.; Liu, L.; Fu, X.; Li, X. Step-like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model. Earth Sci. 2018, 43, 887–898. [Google Scholar]
Model Number | Data Packet Time | Date Volume | |||||
---|---|---|---|---|---|---|---|
200307–200407 | 200407–200507 | 200507–200607 | 200607–200707 | 200707–200807 | 200807–200907 | ||
1 | √ | 12 | |||||
2 | √ | √ | 24 | ||||
3 | √ | √ | √ | 36 | |||
4 | √ | √ | √ | √ | 48 | ||
5 | √ | √ | √ | √ | √ | 60 | |
6 | √ | √ | √ | √ | √ | √ | 72 |
Number of Neurons | RMSE (mm) | Time (s) |
---|---|---|
20 | 28.581 | 55.295 |
40 | 19.602 | 56.638 |
60 | 17.988 | 57.699 |
80 | 12.603 | 60.307 |
100 | 10.175 | 60.649 |
120 | 10.894 | 61.635 |
140 | 11.131 | 62.281 |
Model Number | ZG93 | |||
---|---|---|---|---|
Periodic | Random | |||
RMSE (mm) | R2 | RMSE (mm) | R2 | |
1 | 21.562 | 0.503 | 9.647 | 0.507 |
2 | 20.722 | 0.541 | 8.729 | 0.597 |
3 | 18.741 | 0.624 | 8.127 | 0.651 |
4 | 14.042 | 0.789 | 9.107 | 0.569 |
5 | 11.171 | 0.867 | 9.196 | 0.552 |
6 | 10.175 | 0.889 | 9.468 | 0.514 |
Model Number | ZG93 | |
---|---|---|
RMSE (mm) | R2 | |
1 | 24.165 | 0.917 |
2 | 26.043 | 0.904 |
3 | 20.367 | 0.941 |
4 | 18.582 | 0.952 |
5 | 20.106 | 0.943 |
6 | 18.742 | 0.951 |
Optimal model | 12.301 | 0.979 |
Model Name | Forecast Duration (month) | RMSE (mm) |
---|---|---|
The method proposed | 17 | 9.715 |
PSO-SVR | 12 | 20.770 |
GWO-MIC-SVR | 18 | 14.024 |
M-EEMD-ELM | 15 | - |
V/S-LSTM | 8 | 8.950 |
Chaotic DWT-ELM | 15 | 23.330 |
Multi-Chaotic ELM | 20 | 23.710 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Liao, L.; Luo, H.; Zhu, X.; Lu, Z. Multi-Scale Response Analysis and Displacement Prediction of Landslides Using Deep Learning with JTFA: A Case Study in the Three Gorges Reservoir, China. Remote Sens. 2023, 15, 3995. https://doi.org/10.3390/rs15163995
Jiang Y, Liao L, Luo H, Zhu X, Lu Z. Multi-Scale Response Analysis and Displacement Prediction of Landslides Using Deep Learning with JTFA: A Case Study in the Three Gorges Reservoir, China. Remote Sensing. 2023; 15(16):3995. https://doi.org/10.3390/rs15163995
Chicago/Turabian StyleJiang, Yanan, Lu Liao, Huiyuan Luo, Xing Zhu, and Zhong Lu. 2023. "Multi-Scale Response Analysis and Displacement Prediction of Landslides Using Deep Learning with JTFA: A Case Study in the Three Gorges Reservoir, China" Remote Sensing 15, no. 16: 3995. https://doi.org/10.3390/rs15163995
APA StyleJiang, Y., Liao, L., Luo, H., Zhu, X., & Lu, Z. (2023). Multi-Scale Response Analysis and Displacement Prediction of Landslides Using Deep Learning with JTFA: A Case Study in the Three Gorges Reservoir, China. Remote Sensing, 15(16), 3995. https://doi.org/10.3390/rs15163995