Frequency Increment Design Method of MR-FDA-MIMO Radar for Interference Suppression
Abstract
:1. Introduction
- (i)
- In the context of mitigating multiple mainlobe deceptive interferences in MR-FDA-MIMO radar, a frequency increment based on a virtual array is developed, effectively leveraging the virtual degrees of freedom of MR-FDA-MIMO radar, resulting in improvements in both the number of suppressed interferences and interference performance.
- (ii)
- In the interference suppression stage, various beamforming methods are employed. In the receive beamforming stage, because the sample covariance matrix includes both target and mainlobe deceptive interference information, the interference-plus-noise covariance matrix is reconstructed, and an MVDR beamformer is employed for sidelobe interference suppression. In the transmit beamforming stage, a nonadaptive beamformer is employed for mainlobe deceptive interference suppression, addressing the challenge of inadequate virtual samples.
2. MR-FDA-MIMO Radar Signal Model
3. Based on the MR-FDA-MIMO Radar Interference Suppression Method
3.1. Sidelobe Barrage Interference Suppression
3.2. Mainlobe Deceptive Interference Suppression
3.2.1. Range Compensation
3.2.2. Virtual DOFs Expansion
3.2.3. Mainlobe Deceptive Interference Suppression
- (i)
- Based on virtual ULA design Δf
- (ii)
- Nonadaptive beamforming
4. Results
4.1. Sidelobe Barrage Interference Suppression
4.2. Mainlobe Deceptive Interference Suppression
4.2.1. Two Mainlobe Deceptive Interferences Suppression
4.2.2. Multiple Mainlobe Deceptive Interferences Suppression
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Farina, A. Electronic Counter-Countermeasures. In Radar Handbook, 3rd ed.; Skolnik, M., Ed.; McGraw-Hill: New York, NY, USA, 2008; Chapter 24. [Google Scholar]
- Yan, L.; Addabbo, P.; Hao, C.; Orlando, D.; Farina, A. New ECCM Techniques against Noiselike and/or Coherent Interferers. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1172–1188. [Google Scholar] [CrossRef]
- Soumekh, M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 191–205. [Google Scholar] [CrossRef]
- Zoltowski, M. On the performance analysis of the MVDR beamformer in the presence of correlated interference. IEEE Trans. Acoustic. Speech. Signal Process. 1988, 36, 945–947. [Google Scholar] [CrossRef]
- Li, Y.; Jia, X.; Chen, Y.; Yin, C. Frequency agility MIMO-SAR imaging and anti-deception jamming performance. In Proceedings of the 2014 31th URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, G.; Wen, F.; Zhang, Y.; Yin, J. Trilinear decomposition-based spatial-polarisational filter method for deception jamming suppression of radar. IET Radar Sonar Navig. 2016, 10, 765–773. [Google Scholar] [CrossRef]
- Wen, C.; Huang, Y.; Zheng, L.; Liu, W.; Davidson, T.N. Transmit Waveform Design for Dual-Function Radar-Communication Systems via Hybrid Linear-Nonlinear Precoding. IEEE Trans. Signal Process. 2023, 71, 2130–2145. [Google Scholar] [CrossRef]
- Qian, J.; He, Z. Mainlobe interference suppression with eigenprojection algorithm and similarity constraints. Electron. Lett. 2016, 52, 228–230. [Google Scholar] [CrossRef]
- Zhang, L.; Su, L.; Wang, D.; Luo, Y.; Zhang, Q. Mainlobe Interference Suppression for Radar Network via RPCA-based Covariance Matrix Reconstruction. IEEE Sens. J. 2023, 23, 5094–5108. [Google Scholar] [CrossRef]
- Han, X.; He, H.; Zhang, Q.; Yang, L.; He, Y. Suppression of Deception-False-Target Jamming for Active/Passive Netted Radar Based on Position Error. IEEE Sens. J. 2022, 22, 7902–7912. [Google Scholar] [CrossRef]
- Gao, S.; Yang, X.; Lan, T.; Han, B.; Sun, H.; Yu, Z. Radar main-lobe jamming suppression and identification based on robust whitening Blind Source Separation and Convolutional Neural Networks. IET Radar Sonar Navig. 2022, 16, 552–563. [Google Scholar] [CrossRef]
- Antonik, P. An Investigation of a Frequency Diverse Array. Ph.D. Thesis, University College London, London, UK, 2009. [Google Scholar]
- Wang, W.; So, H.C. Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar. IEEE Trans. Signal Process. 2014, 62, 2000–2011. [Google Scholar] [CrossRef]
- Baizert, P.; Hale, T.B.; Temple, M.A.; Wicks, M.C. Forward-looking radar GMTI benefits using a linear frequency diverse array. Electron. Lett. 2006, 42, 1311–1312. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Huang, L.; So, H.C. Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar. IEEE Trans. Signal Process. 2016, 65, 973–984. [Google Scholar] [CrossRef]
- Lan, L.; Marino, A.; Aubry, A.; De Maio, A.; Liao, G.; Xu, J.; Zhang, Y. GLRT-based Adaptive Target Detection in FDA-MIMO Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 597–613. [Google Scholar] [CrossRef]
- Wen, C.; Huang, Y.; Davidson, T.N. Efficient Transceiver Design for MIMO Dual-Function Radar-Communication Systems. IEEE Trans. Signal Process. 2023, 71, 1786–1801. [Google Scholar] [CrossRef]
- Basit, A.; Wang, W.; Wali, S.; Nusenu, S.Y. Transmit beamspace design for FDACMIMO radar with alternating direction method of multipliers. Signal Process. 2021, 180, 107832. [Google Scholar] [CrossRef]
- Sammartino, P.F.; Baker, C.J.; Griffiths, H.D. Frequency diverse MIMO techniques for radar. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 201–222. [Google Scholar] [CrossRef]
- Wen, C.; Tao, M.; Peng, J.; Wu, J.; Wang, T. Clutter suppression for airborne FDA-MIMO radar using multi-waveform adaptive processing and auxiliary channel STAP. Signal Process. 2019, 154, 280–293. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; So, H.C. Space-Time Adaptive Processing With Vertical Frequency Diverse Array for Range-Ambiguous Clutter Suppression. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5352–5364. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, S.; Lan, L.; Li, X.; Liu, Z.; Wu, Z. Range-Ambiguous Clutter Suppression via FDA MIMO Planar Array Radar with Compressed Sensing. Remote Sens. 2022, 14, 1926. [Google Scholar] [CrossRef]
- Wen, C.; Huang, Y.; Peng, J.; Wu, J.; Zheng, G.; Zhang, Y. Slow-Time FDA-MIMO Technique With Application to STAP Radar. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 74–95. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhu, S.; So, H.C. Deceptive jamming suppression with frequency diverse MIMO radar. Signal Process. 2015, 113, 9–17. [Google Scholar] [CrossRef]
- Ding, Z.; Xie, J.; Xu, J. A Joint Array Parameters Design Method Based on FDA-MIMO Radar. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2909–2919. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, G.; Xu, J.; Lan, L. Mainlobe Deceptive Jammer Suppression Based on Quadratic Phase Coding in FDA-MIMO Radar. Remote Sens. 2022, 14, 5831. [Google Scholar] [CrossRef]
- Nysaeter, A. Adaptive suppression of smart jamming with FDA permutation. In Proceedings of the 2022 IEEE Radar Conference (RadarConf22), New York, NY, USA, 21–25 March 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Tan, M.; Wang, C.; Xue, B.; Xu, J. A novel deceptive jamming approach against frequency diverse array radar. IEEE Sens. J. 2021, 21, 8323–8332. [Google Scholar] [CrossRef]
- Lan, L.; Xu, J.; Liao, G.; Zhang, Y.; Fioranelli, F.; So, H.C. Suppression of Mainbeam Deceptive Jammer With FDA-MIMO Radar. IEEE Trans. Veh. Technol. 2020, 69, 11584–11598. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, D.; Xu, L. Joint polarisation and frequency diversity for deceptive jamming suppression in MIMO radar. IET Radar Sonar Navig. 2019, 13, 263–271. [Google Scholar] [CrossRef]
- Jia, W.; Wang, W.; Zhang, S. Joint design of the transmit and receive weights for coherent FDA radar. Signal Process. 2023, 204, 108834. [Google Scholar] [CrossRef]
- Moffet, A. Minimum-redundancy linear arrays. IEEE Trans. Antenna. Propaga. 1968, 16, 172–175. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P. Multiple level nested array: An efficient geometry for 2qth order cumulate based array processing. IEEE Trans. Signal Process. 2012, 60, 1253–1269. [Google Scholar] [CrossRef]
- Vaidyanathan, P.P.; Pal, P. Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 2011, 59, 573–586. [Google Scholar] [CrossRef]
- Wen, C.; Huang, Y.; Peng, J.; Zheng, G.; Liu, W.; Zhang, J. Reconfigurable Sparse Array Synthesis With Phase-Only Control via Consensus-ADMM-Based Sparse Optimization. IEEE Trans. Veh. Technol. 2021, 70, 6647–6661. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, C.; Wang, W.; So, H. Robust DOA Estimation Against Mutual Coupling With Nested Array. IEEE Signal Process. Lett. 2020, 27, 1360–1364. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, Y.; Wang, W.; So, H. Direction-of-Arrival Estimation of Coherent Signals via Coprime Array Interpolation. IEEE Signal Process. Lett. 2020, 27, 585–589. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P. Nested Arrays in Two Dimensions, Part II: Application in Two Dimensional Array Processing. IEEE Trans. Signal Process. 2012, 60, 4706–4718. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Li, J. FDA-MIMO radar for 3D localization: Virtual coprime planar array with unfolded coprime frequency offset framework and TRD-MUSIC algorithm. Digit. Signal Process. 2021, 113, 103017. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.; Amin, M.; Gini, F. Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization. IEEE J. Sel. Top. Signal Process. 2017, 11, 321–335. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Huang, J.; Lamare, R. Robust Two-Stage Reduced-Dimension Sparsity-Aware STAP for Airborne Radar With Coprime Arrays. IEEE Trans. Signal Process. 2020, 68, 81–96. [Google Scholar] [CrossRef]
- Shi, J.; Xie, L.; Cheng, Z.; He, Z.; Zhang, W. Angle-Doppler Channel Selection Method for Reduced-Dimension STAP Based on Sequential Convex Programming. IEEE Commun. Lett. 2021, 25, 3080–3084. [Google Scholar] [CrossRef]
- Duan, H.; Ng, B.P.; See, C.M.S.; Fang, J. Broadband interference suppression performance of minimum redundancy arrays. IEEE Trans. Signal Process. 2008, 56, 2406–2416. [Google Scholar] [CrossRef]
- Yang, J.; Liao, G.; Li, J. Robust adaptive beamforming in nested array. Signal Process. 2015, 114, 143–149. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; He, S.; Shi, Z. A Robust and Efficient Algorithm for Coprime Array Adaptive Beamforming. IEEE Trans. Veh. Technol. 2018, 67, 1099–1112. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, S.; Xu, J.; Lan, L.; Li, X. FDA-MRMO Radar Interference Suppression. In Proceedings of the 2022 IEEE International Symposium on Phased Array Systems & Technology (PAST), Waltham, MA, USA, 11–14 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, S.; Xu, J.; Lan, L.; Zhang, M. Interference Suppression Method with MR-FDA-MIMO Radar. IEEE Trans. Aerosp. Electron. Syst. 2023. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhu, S.; Huang, L.; So, H.C. Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Trans. Signal Process. 2015, 63, 3396–3410. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhang, Y.; Ji, H.; Huang, L. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization. IEEE J. Sel. Top. Signal Process. 2017, 11, 309–320. [Google Scholar] [CrossRef]
- Lan, L.; Liao, G.; Xu, J.; Xu, Y.; So, C. Beampattern Synthesis Based on Novel Receive Delay Array for Mainlobe Interference Mitigation. IEEE Trans. Antennas Propag. 2023, 71, 4470–4485. [Google Scholar] [CrossRef]
- Lan, L.; Liao, G.; Xu, J.; Zhang, Y.; Fioranelli, F. Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection. IEEE Access 2018, 6, 34582–34597. [Google Scholar] [CrossRef]
- Ahmed, S. Product-based pulse integration to combat noise jamming. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2109–2115. [Google Scholar] [CrossRef]
- Gu, Y.; Leshem, A. Robust Adaptive Beamforming Based on Interference Covariance Matrix Reconstruction and Steering Vector Estimation. IEEE Trans. Signal Process. 2012, 60, 3881–3885. [Google Scholar] [CrossRef]
- Lan, L.; Liao, G.; Xu, J.; Zhang, Y.; Liao, B. Transceive beamforming with accurate nulling in FDA-MIMO radar for imaging. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4145–4159. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P. Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [Google Scholar] [CrossRef]
- Reed, I.; Mallett, J.; Brennan, L. Rapid convergence rate in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 1974, 10, 853–863. [Google Scholar] [CrossRef]
Number of Array Element | Array Element Locations |
---|---|
3 | 0 1 3 |
4 | 0 1 4 6 |
5 | 0 1 4 7 9 |
6 | 0 1 2 6 10 13 |
7 | 0 1 2 6 10 14 17 |
8 | 0 1 2 11 15 18 21 23 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Transmit element number | 7 | Receive element number | 7 |
Sample frequency | 5 MHz | Reference frequency | 10 GHz |
Pulse repetition frequency (PRF) | 5 KHz | Wavelength | 0.03 m |
Angle of the true target | 0° | SNR | 20 dB |
Angle of the false target 1 | 0° | INR1 | 20 dB |
Angle of the false target 2 | 0° | INR2 | 20 dB |
Angle of the sidelobe interference 1 | 30° | INRn1 | 40 dB |
Angle of the sidelobe interference 2 | −30° | INRn2 | 40 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Zhu, S.; Xu, J.; Lan, L.; Li, X.; Zhang, Y. Frequency Increment Design Method of MR-FDA-MIMO Radar for Interference Suppression. Remote Sens. 2023, 15, 4070. https://doi.org/10.3390/rs15164070
Wu Z, Zhu S, Xu J, Lan L, Li X, Zhang Y. Frequency Increment Design Method of MR-FDA-MIMO Radar for Interference Suppression. Remote Sensing. 2023; 15(16):4070. https://doi.org/10.3390/rs15164070
Chicago/Turabian StyleWu, Zhixia, Shengqi Zhu, Jingwei Xu, Lan Lan, Ximin Li, and Yiqun Zhang. 2023. "Frequency Increment Design Method of MR-FDA-MIMO Radar for Interference Suppression" Remote Sensing 15, no. 16: 4070. https://doi.org/10.3390/rs15164070
APA StyleWu, Z., Zhu, S., Xu, J., Lan, L., Li, X., & Zhang, Y. (2023). Frequency Increment Design Method of MR-FDA-MIMO Radar for Interference Suppression. Remote Sensing, 15(16), 4070. https://doi.org/10.3390/rs15164070