A Geospatial Analysis-Based Method for Railway Route Selection in Marine Glaciers: A Case Study of the Sichuan-Tibet Railway Network
Abstract
:1. Introduction
1.1. Background
1.2. Previous Studies
1.3. Geomorphic Features Shaped by Marine Glaciers
1.4. Problem Statement and Research Scope
2. Materials and Methods
2.1. Favorable Glacial Landforms Available for Railway and Road Construction
2.1.1. Glacier Canyon
2.1.2. Valley Shoulder
2.1.3. Moraine Mesa
2.1.4. Ancient Dammed Lake Basin
2.2. Railway Route Selection Process for Marine Glacier Distribution Area
2.2.1. Determining Direct-Action and Indirect-Action Zones of Existing Glaciers
2.2.2. Identification and Utilization of Glacier Canyons
Identification of Glacier Canyons
3. Case Study
3.1. Study Area
3.2. Assessment of the General Situation of Glaciers in Study Area
4. Result
4.1. Direct-Action and Indirect-Action Zones of Existing Glaciers in Palong Zangbo Watershed
4.2. Glacier Canyons in Palong Zangbo Watershed
4.3. Moraine Mesa in Palong Zangbo Watershed
5. Discussion
5.1. Analysis of Types and Distribution Characteristics of Glacier Landforms in Glacier Indirect-Action Zone
5.2. Utilization Strategies for Glacier Canyons in Palong Zangbo Watershed
Typical Glacier Canyons in Watersheds
5.3. Utilization Strategies for Moraine Mesas in Palong Zangbo Watershed
Typical Moraine Mesas in Watersheds
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Num | Longitude | Latitude | Average Elevation (m) | Area (km2) | Average Longitudinal Slope of Channel (‰) | Maximum Annual Average Velocity (m/Year) |
---|---|---|---|---|---|---|
1 | 95.284073 | 30.096201 | 4848.4 | 23.2692 | 42.4 | 2.413557 |
2 | 95.286990 | 30.072298 | 4607.7 | 5.4809 | 37.7 | 2.911134 |
3 | 95.289738 | 30.103429 | 5020.3 | 5.8199 | 40.8 | 1.065454 |
4 | 95.301970 | 30.081541 | 4895.5 | 58.9255 | 29.6 | 1.33735 |
5 | 95.329965 | 30.073844 | 4705.4 | 26.5903 | 20.2 | 0.203122 |
6 | 95.342064 | 30.069246 | 4623.6 | 11.3877 | 22.4 | 2.407995 |
7 | 95.346781 | 30.086370 | 4612.5 | 2.4844 | 25.6 | 1.303416 |
8 | 95.348298 | 30.066409 | 4648.9 | 2.0011 | 29.0 | 2.915329 |
9 | 95.349526 | 30.076569 | 4589.0 | 41.0982 | 34.3 | 0.085633 |
10 | 95.350590 | 30.089774 | 4660.3 | 2.0560 | 31.6 | 1.242402 |
11 | 95.352854 | 30.040574 | 4747.4 | 4.9403 | 29.5 | 1.276091 |
12 | 95.352996 | 30.053494 | 4725.6 | 23.2429 | 29.1 | 2.804328 |
13 | 95.356222 | 30.059783 | 4742.6 | 4.4257 | 30.6 | 2.606029 |
14 | 95.373935 | 30.055716 | 4688.9 | 48.0394 | 26.2 | 0.416241 |
15 | 95.374934 | 30.033849 | 4796.2 | 54.4853 | 25.6 | 2.663411 |
16 | 95.379405 | 30.018039 | 4823.6 | 5.4145 | 40.7 | 2.670654 |
17 | 95.389789 | 30.039811 | 4919.2 | 3.4336 | 38.5 | 1.979752 |
18 | 95.393931 | 30.005868 | 4652.9 | 7.3928 | 20.9 | 1.784284 |
19 | 95.557754 | 29.779349 | 4215.3 | 7.0667 | 25.3 | 0.10527 |
20 | 95.591996 | 29.795142 | 4277.2 | 7.2871 | 28.6 | 1.387739 |
21 | 95.600672 | 29.790360 | 4513.4 | 3.0978 | 21.8 | 2.855208 |
22 | 95.609669 | 29.790928 | 4469.5 | 3.4018 | 26.8 | 0.378946 |
23 | 95.616739 | 29.824367 | 4448.7 | 3.2500 | 31.5 | 0.801321 |
24 | 95.622958 | 29.823840 | 4670.7 | 8.8303 | 33.4 | 1.892093 |
25 | 95.632589 | 29.824282 | 4422.8 | 8.8406 | 30.9 | 1.973964 |
26 | 95.639798 | 29.787401 | 4729.5 | 48.3505 | 26.6 | 2.041979 |
27 | 95.659655 | 29.800201 | 4936.4 | 3.5261 | 35.0 | 0.930059 |
28 | 95.668327 | 29.781601 | 4539.0 | 46.7083 | 25.6 | 0.193157 |
29 | 95.669538 | 29.810607 | 5023.6 | 12.1663 | 31.1 | 2.039853 |
30 | 95.671019 | 29.800941 | 5169.5 | 3.0766 | 28.8 | 1.974058 |
31 | 95.678182 | 29.828063 | 4591.2 | 0.9498 | 29.9 | 2.713688 |
32 | 95.680609 | 29.806841 | 4838.1 | 2.7429 | 36.5 | 1.314979 |
33 | 95.727180 | 29.725566 | 4980.4 | 33.3069 | 26.7 | 1.071893 |
34 | 95.730371 | 29.755582 | 4706.5 | 60.8256 | 31.9 | 0.92676 |
35 | 95.737528 | 29.664525 | 4800.8 | 36.0317 | 28.8 | 2.562716 |
36 | 95.740038 | 29.773499 | 4722.6 | 24.4568 | 30.0 | 1.389102 |
37 | 95.741864 | 29.713756 | 4312.9 | 51.9617 | 28.8 | 2.542675 |
38 | 95.742184 | 29.676272 | 4861.6 | 4.1665 | 31.1 | 0.864322 |
39 | 95.746570 | 29.740340 | 4942.6 | 27.9591 | 24.4 | 1.568109 |
40 | 95.750153 | 29.687916 | 4626.7 | 11.6295 | 40.2 | 0.827606 |
41 | 95.757995 | 29.772032 | 4556.6 | 24.8711 | 31.1 | 0.279302 |
42 | 95.762158 | 29.754353 | 4975.1 | 16.4861 | 24.4 | 2.466158 |
43 | 95.763649 | 29.741586 | 5040.5 | 9.1645 | 28.7 | 0.702743 |
44 | 95.770524 | 29.734573 | 4793.0 | 0.3985 | 29.8 | 2.391283 |
45 | 95.775943 | 29.735004 | 4846.4 | 1.2269 | 32.1 | 1.745905 |
46 | 95.778364 | 29.751224 | 4487.8 | 41.3721 | 34.2 | 2.58252 |
47 | 95.786473 | 29.740762 | 4861.1 | 17.9792 | 22.8 | 2.184233 |
48 | 96.131339 | 29.570754 | 4852.0 | 3.5016 | 20.0 | 0.638116 |
49 | 96.133998 | 29.554140 | 4893.7 | 116.6420 | 19.3 | 1.288635 |
50 | 96.138661 | 29.662152 | 4603.8 | 1.9179 | 34.1 | 2.756281 |
51 | 96.145016 | 29.659400 | 4336.4 | 0.9821 | 11.6 | 2.783246 |
52 | 96.167896 | 29.535407 | 4796.1 | 153.5633 | 20.4 | 1.517767 |
53 | 96.197237 | 29.544374 | 5116.7 | 2.6770 | 29.9 | 1.505184 |
54 | 96.202880 | 29.565596 | 4907.9 | 4.0733 | 30.3 | 1.740969 |
55 | 96.202920 | 29.551042 | 5111.1 | 2.8568 | 29.5 | 1.754286 |
56 | 96.343069 | 29.455380 | 4657.1 | 206.7379 | 18.2 | 2.923467 |
57 | 96.012106 | 29.574847 | 4898.9 | 170.3105 | 26.5 | 2.778631 |
58 | 96.015343 | 29.621585 | 5275.9 | 6.9486 | 26.3 | 0.806284 |
59 | 96.029292 | 29.607529 | 5324.7 | 0.2735 | 30.0 | 1.377133 |
60 | 96.032038 | 29.603079 | 5270.7 | 1.5175 | 32.9 | 1.809695 |
61 | 96.032302 | 29.613187 | 5323.3 | 19.9610 | 24.2 | 2.355766 |
62 | 96.035371 | 29.593456 | 5323.0 | 26.1572 | 36.2 | 2.034548 |
63 | 96.037331 | 29.656847 | 5764.8 | 3.7799 | 24.6 | 0.525738 |
64 | 96.037869 | 29.652486 | 5536.6 | 2.4257 | 36.6 | 1.665159 |
65 | 96.039469 | 29.630104 | 5370.1 | 100.4331 | 27.3 | 2.691794 |
66 | 96.061292 | 29.667231 | 4949.9 | 156.0992 | 28.7 | 0.946208 |
67 | 96.073148 | 29.702328 | 4581.3 | 1.2444 | 39.7 | 2.760761 |
68 | 96.077290 | 29.568875 | 4983.4 | 281.8942 | 18.7 | 0.53237 |
69 | 96.106870 | 29.597288 | 5303.2 | 10.3871 | 23.0 | 2.866037 |
70 | 96.112137 | 29.601066 | 5362.4 | 3.8040 | 26.6 | 2.382267 |
71 | 96.114074 | 29.662432 | 4937.3 | 46.3425 | 22.4 | 2.560311 |
72 | 96.114207 | 29.678538 | 5114.1 | 4.8475 | 16.5 | 1.69187 |
73 | 96.114572 | 29.685689 | 4927.0 | 1.1517 | 51.3 | 1.933324 |
74 | 96.115536 | 29.604541 | 5389.0 | 2.5162 | 19.9 | 2.581221 |
75 | 96.122348 | 29.650221 | 4783.1 | 10.2224 | 17.9 | 0.124409 |
References
- Williams, R.S., Jr.; Ferrigno, J.G. (Eds.) Satellite Image Atlas of Glaciers of the World; US Geological Survey: Reston, VA, USA, 1988.
- Zhang, Y.; Zhang, L.; He, Y.; Yao, S.; Yang, W.; Cao, S.; Sun, Q. Analysis of the Future Trends of Typical Mountain Glacier Movements along the Sichuan-Tibet Railway Based on ConvGRU Network. Int. J. Digit. Earth 2023, 16, 762–780. [Google Scholar] [CrossRef]
- Ahmed, R.; Wani, G.F.; Ahmad, S.T.; Sahana, M.; Singh, H.; Ahmed, P. A Review of Glacial Lake Expansion and Associated Glacial Lake Outburst Floods in the Himalayan Region. Earth Syst. Environ. 2021, 5, 695–708. [Google Scholar] [CrossRef]
- Brown, G.H. Glacier Meltwater Hydrochemistry. Appl. Geochem. 2002, 17, 855–883. [Google Scholar] [CrossRef]
- Byers, A.C.; Shugar, D.H.; Chand, M.B.; Portocarrero, C.; Shrestha, M.; Rounce, D.R.; Watanabe, T. Three Recent and Lesser-Known Glacier-Related Flood Mechanisms in High Mountain Environments. Mt. Res. Dev. 2022, 42, A12–A22. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Mool, P. Glaciers, Glacial Lakes and Glacial Lake Outburst Floods in the Mount Everest Region, Nepal. Ann. Glaciol. 2009, 50, 81–86. [Google Scholar] [CrossRef]
- Schmidt, S.; Nüsser, M.; Baghel, R.; Dame, J. Cryosphere Hazards in Ladakh: The 2014 Gya Glacial Lake Outburst Flood and Its Implications for Risk Assessment. Nat. Hazards 2020, 104, 2071–2095. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An Overview of Glacial Hazards in the Himalayas. Quat. Int. 2000, 65–66, 31–47. [Google Scholar] [CrossRef]
- Kougkoulos, I.; Cook, S.J.; Edwards, L.A.; Clarke, L.J.; Symeonakis, E.; Dortch, J.M.; Nesbitt, K. Modelling Glacial Lake Outburst Flood Impacts in the Bolivian Andes. Nat. Hazards 2018, 94, 1415–1438. [Google Scholar] [CrossRef]
- Huggel, C.; Kääb, A.; Haeberli, W.; Krummenacher, B. Regional-Scale GIS-Models for Assessment of Hazards from Glacier Lake Outbursts: Evaluation and Application in the Swiss Alps. Nat. Hazards Earth Syst. Sci. 2003, 3, 647–662. [Google Scholar] [CrossRef]
- Abdel-Fattah, D.; Trainor, S.; Hood, E.; Hock, R.; Kienholz, C. User Engagement in Developing Use-Inspired Glacial Lake Outburst Flood Decision Support Tools in Juneau and the Kenai Peninsula, Alaska. Front. Earth Sci. 2021, 9, 635163. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Ke, L.; Nie, Y.; Wang, J. Glacial Lake Evolution in the Southeastern Tibetan Plateau and the Cause of Rapid Expansion of Proglacial Lakes Linked to Glacial-Hydrogeomorphic Processes. J. Hydrol. 2016, 540, 504–514. [Google Scholar] [CrossRef]
- Osti, R.; Egashira, S. Hydrodynamic Characteristics of the Tam Pokhari Glacial Lake Outburst Flood in the Mt. Everest Region, Nepal. Hydrol. Process. 2009, 23, 2943–2955. [Google Scholar] [CrossRef]
- Cheng, Z.; Shi, L.; Liu, J. Distribution and Change of Glacier Lakes in the Upper Palongzangbu River. Bull. Soil Water Conserv. 2012, 32, 8–12. [Google Scholar]
- Yamada, T. Glacier Lakes and Outburst Floods in the Nepal Himalaya. IAHS Pub. 1993, 218, 319–330. [Google Scholar]
- Kattelmann, R. Glacial Lake Outburst Floods in the Nepal Himalaya: A Manageable Hazard? Nat. Hazards 2003, 28, 145–154. [Google Scholar] [CrossRef]
- Yongbo, T.I.E.; Xianzheng, Z.; Lingfeng, G.; Yanchao, G.A.O.; Yongjian, B.A.I.; Wei, X.U.; Renji, B.A.; Zongliang, L.I.; Hua, G.E. Research on the Pattern of Typical Geohazard Chains in the Southwest Mountainous Region, China. J. Geomech. 2022, 28, 1071–1080. [Google Scholar] [CrossRef]
- Shi, Y.F. An Exploring Innovative Research Case: Recollection of the Batura Glacier Expedition and Research on Restoring Karakorum Highway Project. J. Glaciol. Geocryol. 2003, 25, 479–481. [Google Scholar]
- Sharafat, A.; Khan, M.S.; Latif, K.; Tanoli, W.A.; Park, W.; Seo, J. BIM-GIS-Based Integrated Framework for Underground Utility Management System for Earthwork Operations. Appl. Sci. 2021, 11, 5721. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, S.; Qi, M.; Xie, F.; Wu, K.; Zhu, Y. Glacier-Related Hazards Along the International Karakoram Highway: Status and Future Perspectives. Front. Earth Sci. 2021, 9, 611501. [Google Scholar] [CrossRef]
- Sun, Y.; Ge, Y.; Chen, X.; Zeng, L.; Liang, X. Risk Assessment of Debris Flow along the Northern Line of the Sichuan-Tibet Highway. Geomat. Nat. Hazards Risk 2023, 14, 2195531. [Google Scholar] [CrossRef]
- Lin, M.; Gong, C.; Huang, H.; Yang, D. Damage Model and the Influence Factors of Mitigation Engineering against Glacial Debris Flow in the Parlung River Basin, SE Tibetan Plateau. Water 2023, 15, 1098. [Google Scholar] [CrossRef]
- Kitzberger, T. Ecotones as complex arenas of disturbance, climate, and human impacts: The trans-Andean forest-steppe ecotone of northern Patagonia. In Ecotones between Forest and Grassland; Springer: New York, NY, USA, 2012; pp. 59–88. [Google Scholar]
- Sharafat, A.; Latif, K.; Seo, J. Risk Analysis of TBM Tunneling Projects Based on Generic Bow-Tie Risk Analysis Approach in Difficult Ground Conditions. Tunn. Undergr. Sp. Technol. 2021, 111, 103860. [Google Scholar] [CrossRef]
- Sharafat, A.; Tanoli, W.A.; Raptis, G.; Seo, J.W. Controlled Blasting in Underground Construction: A Case Study of a Tunnel Plug Demolition in the Neelum Jhelum Hydroelectric Project. Tunn. Undergr. Sp. Technol. 2019, 93, 103098. [Google Scholar] [CrossRef]
- Sharafat, A.; Khan, M.S.; Latif, K.; Seo, J. BIM-Based Tunnel Information Modeling Framework for Visualization, Management, and Simulation of Drill-and-Blast Tunneling Projects. J. Comput. Civ. Eng. 2021, 35, 04020068. [Google Scholar] [CrossRef]
- Lu, C.; Cai, C. Challenges and Countermeasures for Construction Safety during the Sichuan–Tibet Railway Project. Engineering 2019, 5, 833–838. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, S.; Li, J.; Shangguan, D. The Retreat of Glaciers in Response to Recent Climate Warming in Western China. Ann. Glaciol. 2006, 43, 97–105. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Stoffel, M.; Zamorano-Orozco, J.J. Glacial Geomorphology of the Chirripó National Park, Costa Rica. J. Maps 2019, 15, 538–545. [Google Scholar] [CrossRef]
- Shi, Y.F.; Cui, Z.J.; Su, Z. The Quaternary Glaciations and Environmental Variations in China; Hebei Science and Technology Press: Shijiazhuang, China, 2006; pp. 173–179. [Google Scholar]
- Harbor, J.M.; Hallet, B.; Raymond, C.F. A Numerical Model of Landform Development by Glacial Erosion. Nature 1988, 333, 347–349. [Google Scholar] [CrossRef]
- Bolch, T.; Loibl, D. GIS for Glaciers and Glacial Landforms; Elsevier: Amsterdam, The Netherlands, 2017; Volume 3, ISBN 9780128046609. [Google Scholar]
- Spotila, J.A. 2.24—Glacially-Influenced Tectonic Geomorphology: The Impact of Glacial Erosion on Topography and Orogenic Systems, 2nd ed.; Shroder, J., Ed.; Academic Press: Oxford, UK, 2022; pp. 671–694. ISBN 978-0-12-818235-2. [Google Scholar]
- Anderson, R.S.; Molnar, P.; Kessler, M.A. Features of Glacial Valley Profiles Simply Explained. J. Geophys. Res 2006, 111, 1004. [Google Scholar] [CrossRef]
- Herman, F.; Beaud, F.; Champagnac, J.D.; Lemieux, J.M.; Sternai, P. Glacial Hydrology and Erosion Patterns: A Mechanism for Carving Glacial Valleys. Earth Planet. Sci. Lett. 2011, 310, 498–508. [Google Scholar] [CrossRef]
- Allred, K.J.; Luo, W. Quantifying and Predicting the Glacial Extent Using Valley Morphometry and Data-Mining Techniques. Ann. GIS 2016, 22, 203–214. [Google Scholar] [CrossRef]
- Meschede, M. Takonische Orogenese, f.,(Taconic Orogeny); Springer Spektrum: Berlin, Germany, 2021. [Google Scholar]
- Leith, K.; Moore, J.R.; Amann, F.; Loew, S. Subglacial Extensional Fracture Development and Implications for Alpine Valley Evolution. J. Geophys. Res. Earth Surf. 2014, 119, 62–81. [Google Scholar] [CrossRef]
- Hu, G.; Yi, C.L.; Zhang, J.F.; Liu, J.H.; Jiang, T.; Qin, X. Optically Stimulated Luminescence Dating of a Moraine and a Terrace in Laohugou Valley, Western Qilian Shan, Northeastern Tibet. Quat. Int. 2014, 321, 37–49. [Google Scholar] [CrossRef]
- Liu, W.; Lai, Z.; Hu, K.; Ge, Y.; Cui, P.; Zhang, X.; Liu, F. Age and Extent of a Giant Glacial-Dammed Lake at Yarlung Tsangpo Gorge in the Tibetan Plateau. Geomorphology 2015, 246, 370–376. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Hu, G.; Ge, Y.; Yuan, R. An Early Holocene River Blockage Event on the Western Boundary of the Namche Barwa Syntaxis, Southeastern Tibetan Plateau. Geomorphology 2021, 395, 107990. [Google Scholar] [CrossRef]
- Yuan, G.; Zeng, Q. Glacier-Dammed Lake in Southeastern Tibetan Plateau during the Last Glacial Maximum. J. Geol. Soc. India 2012, 79, 295–301. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Ye, Q.; Zong, J.; Tian, L.; Cogley, J.G.; Song, C.; Guo, W. Glacier Changes on the Tibetan Plateau Derived from Landsat Imagery: Mid-1970s–2000–13. J. Glaciol. 2017, 63, 273–287. [Google Scholar] [CrossRef]
- Van Wyk De Vries, M.; Wickert, A.D. Glacier Image Velocimetry: An Open-Source Toolbox for Easy and Rapid Calculation of High-Resolution Glacier Velocity Fields. Cryosphere 2021, 15, 2115–2132. [Google Scholar] [CrossRef]
- Kellerer-pirklbauer, A.; Kaufmann, V. About the Relationship between Rock Glacier Velocity and Climate Parameters in Central Austria. Austrian J. Earth Sci. 2012, 105. [Google Scholar]
- Benoit, L.; Dehecq, A.; Pham, H.T.; Vernier, F.; Trouvé, E.; Moreau, L.; Martin, O.; Thom, C.; Pierrot-Deseilligny, M.; Briole, P. Multi-Method Monitoring of Glacier d’Argentière Dynamics. Ann. Glaciol. 2015, 56, 118–128. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Gupta, R.P.; Arora, M.K. Estimation of Surface Ice Velocity of Chhota-Shigri Glacier Using Sub-Pixel ASTER Image Correlation. Curr. Sci. 2014, 106, 853–859. [Google Scholar]
- Nela, B.R.; Singh, G.; Kulkarni, A.V.; Malik, K. Optimum Conditions for Differential SAR Interferometry Technique to Estimate Himalayan Glacier Velocity. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 137–140. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, J.; Li, Z.; Yang, Z.; Yang, J.; Li, G. Three-Dimensional Flow Velocity Estimation of Mountain Glacier Based on SAR Interferometry and Offset-Tracking Technology: A Case of the Urumqi Glacier No.1. Water 2022, 14, 1779. [Google Scholar] [CrossRef]
- James, L.A. Earth Surface Processes and Landforms Polynomial and Power Functions for Glacial Valley Cross-Section Morphology. Earth Surf. Process. Landf. 1996, 21, 413–432. [Google Scholar] [CrossRef]
- LiYingkui, L. Discussion on the Crosssection Features of Glacial Valley. J. Glaciol. Geocryol. 2000, 22, r171–r177. [Google Scholar]
- Yang, S.; Shi, Y. Three-Dimensional Numerical Simulation of Glacial Trough Forming Process. Sci. China Earth Sci. 2015, 58, 1656–1668. [Google Scholar] [CrossRef]
- Kassab, C.; Harbor, J. Alternative Coordinate Systems for Analyzing Cross-Section Shapes of Glaciated Valleys: A Case Study from the Dalijia Mountains, China. Phys. Geogr. 2013, 34, 108–123. [Google Scholar] [CrossRef]
- Al-Gurairy, A.S.Y. The Evidences of Neotectonics Activations by Using Geomorphological Characteristics and Remote Sensing, and Use That in Exploration of Oil and Gas: A Case Study in Al-Amghr Valley–Southern Desert of Iraq. Al-Qadisiyah J. Humanit. Sci. 2023, 26, 37–56. [Google Scholar]
- Cauvy-Fraunié, S.; Dangles, O. A Global Synthesis of Biodiversity Responses to Glacier Retreat. Nat. Ecol. Evol. 2019, 3, 1675–1685. [Google Scholar] [CrossRef]
- Lekstutyte, I.; Gadeikis, S.; Skuodis, S. Some Mechanical Properties of Medininkai Glacial Period Overconsolidated Moraine Clay. In Proceedings of the 26th European Young Geotechnical Engineers Conference, Graz, Austria, 11–14 September 2018. [Google Scholar]
- Bolch, T.; Yao, T.; Kang, S.; Buchroithner, M.F.; Scherer, D.; Maussion, F.; Huintjes, E.; Schneider, C. A Glacier Inventory for the Western Nyainqentanglha Range and the Nam Co Basin, Tibet, and Glacier Changes 1976–2009. Cryosph 2010, 4, 419–433. [Google Scholar] [CrossRef]
- Mehta, S.R.; Cannon, C.P.; Fox, K.A.A.; Wallentin, L.; Boden, W.E.; Spacek, R.; Widimsky, P.; McCullough, P.A.; Hunt, D.; Braunwald, E. Routine vs Selective Invasive Strategies in Patients with Acute Coronary Syndromes: A Collaborative Meta-Analysis of Randomized Trials. JAMA 2005, 293, 2908–2917. [Google Scholar] [CrossRef] [PubMed]
Valley Parameters | Glacier Parameters | ||||||
---|---|---|---|---|---|---|---|
Num | Watershed Area (km2) | Type of Valley | Average Longitudinal Slope of Channel (‰) | Glacier Change | Position of Glacier | Ice Bucket Area (km2) | Area of Glaciers and Moraine (km2) |
1 | 128.50 | Glacier canyon | 11 | significant withdrawal | Right | 0.08 | 8.17 |
2 | 89.37 | Glacier canyon | 6.7 | significant withdrawal | Both sides | 3.32 | 26.98 |
3 | 62.29 | Glacier canyon | 16.5 | significant withdrawal | Top, both sides | 8.21 | 28.52 |
4 | 153.22 | Glacier canyon | 14.6 | significant withdrawal | Top, both sides | 19.88 | 91.41 |
5 | 73.80 | Glacier canyon | 21 | significant withdrawal | Top, right | 9.12 | 0.25 |
6 | 65.77 | Glacier canyon | 24 | significant withdrawal | Top, right | 1.17 | 13.79 |
7 | 52.08 | Glacier canyon | 9.5 | significant withdrawal | left | 0.86 | 0.98 |
8 | 46.73 | Glacier canyon | 10.4 | significant withdrawal | Top | 0.71 | 0.71 |
9 | 44.80 | Glacier canyon | 12.3 | significant withdrawal | Top | 1.38 | 2.19 |
10 | 41.30 | Glacier canyon | 27.8 | significant withdrawal | Top, right | 1.31 | 18.88 |
11 | 65.29 | Glacier canyon | 16.4 | significant withdrawal | Top | 0 | 37.37 |
12 | 70.29 | Glacier canyon | 28.6 | significant withdrawal | both sides | 0.97 | 22.91 |
13 | 42.64 | Glacier canyon | 5.6 | significant withdrawal | Top | 5.06 | 31.38 |
14 | 94.41 | Glacier canyon | 7.4 | significant withdrawal | right | 0.38 | 90.38 |
15 | 49.51 | Glacier canyon | 31 | significant withdrawal | Top | 1.19 | 93.20 |
16 | 72.24 | Glacier canyon | 22.2 | significant withdrawal | Top | 1.64 | 103.55 |
17 | 88.76 | Glacier canyon | 21.3 | significant withdrawal | Top, right | 1.55 | 75.36 |
18 | 58.25 | Glacier canyon | 27.6 | significant withdrawal | Top | 0.12 | 55.64 |
19 | 104.60 | Glacier canyon | 8.7 | significant withdrawal | Top, left | 2.78 | 107.46 |
20 | 125.69 | Glacier canyon | 9.4 | significant withdrawal | Top | 3.51 | 106.35 |
21 | 125.08 | Glacier canyon | 15.3 | significant withdrawal | Top | 0.13 | 95.91 |
22 | 61.33 | Glacier canyon | 16.9 | significant withdrawal | Top | 0.35 | 24.61 |
Type of Glaciers Landforms | Formation Time | Distribution Location | Landform Characteristics |
---|---|---|---|
branch glacier canyon | Penultimate glacial period and Last glacial period (136–11.1 kaBP) | most are in first-level tributaries of main river, and are orthogonal to main river | wide and straight |
moraine mesa at mouth of tributary | Neoglacial period and little ice age (136–11.1 kaBP) | at junction of branch ditches and main river valley | distributed intermittently along main river; more moraine mesas are located on north bank of main river |
lateral and terminal moraine located in middle and lower reaches of tributary | Neoglacial period (1–3.5 kaBP) | middle and lower reaches of tributary | high altitude and scattered distribution |
lateral and terminal moraine located in upstream of tributary | Little ice age (0.2–0.4 kaBP) | upstream of tributary | high altitude and scattered distribution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, T.; Sharafat, A.; Wie, Y.M.; Lee, K.G.; Lee, E.; Lee, K.H. A Geospatial Analysis-Based Method for Railway Route Selection in Marine Glaciers: A Case Study of the Sichuan-Tibet Railway Network. Remote Sens. 2023, 15, 4175. https://doi.org/10.3390/rs15174175
Deng T, Sharafat A, Wie YM, Lee KG, Lee E, Lee KH. A Geospatial Analysis-Based Method for Railway Route Selection in Marine Glaciers: A Case Study of the Sichuan-Tibet Railway Network. Remote Sensing. 2023; 15(17):4175. https://doi.org/10.3390/rs15174175
Chicago/Turabian StyleDeng, Tao, Abubakar Sharafat, Young Min Wie, Ki Gang Lee, Euiong Lee, and Kang Hoon Lee. 2023. "A Geospatial Analysis-Based Method for Railway Route Selection in Marine Glaciers: A Case Study of the Sichuan-Tibet Railway Network" Remote Sensing 15, no. 17: 4175. https://doi.org/10.3390/rs15174175
APA StyleDeng, T., Sharafat, A., Wie, Y. M., Lee, K. G., Lee, E., & Lee, K. H. (2023). A Geospatial Analysis-Based Method for Railway Route Selection in Marine Glaciers: A Case Study of the Sichuan-Tibet Railway Network. Remote Sensing, 15(17), 4175. https://doi.org/10.3390/rs15174175