Robust Space-Time Adaptive Processing Method for GNSS Receivers in Coherent Signal Environments
Abstract
:1. Introduction
2. ST2D Signal Model of GNSS Receivers
3. Proposed Robust STAP Method for GNSS Receivers in Coherent Signal Environments
3.1. ST2D-IAA Spectrum Estimation
3.2. STINCM Reconstruction
3.3. STSV Estimation
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Algorithm A1 The ST2D-IAA Algorithm |
1: initialization 2: for 3: for 4: 5: end for 6: end for 7: repeat 8: 9: for 10: for 11: 12: 13: end for 14: end for 15: until (convergence) |
Appendix A.2
Algorithm A2 The Modified ST2D-IAA Algorithm |
1: initialization 2: , ; 3: 4: repeat 5: 6: 7: for 8: for 9: for 10: 11: end for 12: end for 13: 14: 15: 16: end for 17: , ; 18: 19: until (convergence) |
References
- Marut, G.; Hadas, T.; Kaplon, J.; Trzcina, E.; Rohm, W. Monitoring the water vapor content at high spatio-temporal resolution using a network of low-cost multi-GNSS receivers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5804614. [Google Scholar] [CrossRef]
- Suzuki, T. GNSS Odometry: Precise trajectory estimation based on carrier phase cycle slip estimation. IEEE Robot. Autom. Lett. 2022, 7, 7319–7326. [Google Scholar] [CrossRef]
- Osechas, O.; Fohlmeister, F.; Dautermann, T.; Felux, M. Impact of GNSS-band radio interference on operational avionics. Navig. J. Inst. Navig. 2022, 69, navi.516. [Google Scholar] [CrossRef]
- Chen, X.; He, D.; Yan, X.; Yu, W.; Truong, T.K. GNSS interference type recognition with fingerprint spectrum DNN method. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 4745–4760. [Google Scholar] [CrossRef]
- Meng, L.; Yang, L.; Yang, W.; Zhang, L. A survey of GNSS spoofing and anti-spoofing technology. Remote Sens. 2022, 14, 4826. [Google Scholar] [CrossRef]
- Huang, L.; Lu, Z.; Xiao, Z.; Ren, C.; Song, J.; Li, B. Suppression of jammer multipath in GNSS antenna array receiver. Remote Sens. 2022, 14, 350. [Google Scholar] [CrossRef]
- Lu, Z.; Song, J.; Huang, L.; Ren, C.; Xiao, Z.; Li, B. Distortionless 1/2 overlap windowing in frequency domain anti-jamming of satellite navigation receivers. Remote Sens. 2022, 14, 1801. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, W.; Yuan, T.; Wang, J.; Sangaiah, A.K. SCSTCF: Spatial-channel selection and temporal regularized correlation filters for visual tracking. Appl. Soft Comput. 2022, 118, 108485. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, Q.; He, F.; Meng, J. Impacts of phase noise on the anti-jamming performance of power inversion algorithm. Sensors 2022, 22, 2362. [Google Scholar] [CrossRef]
- Cox, H.; Zeskind, R.M.; Owen, M.M. Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1365–1376. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, T.; Yang, G.; Jiang, C.; Hu, Y.; Lan, T.; Zhao, Z. A novel method for improving quality of oblique incidence sounding ionograms based on eigenspace-based beamforming technology and Capon high-resolution range profile. Remote Sens. 2022, 14, 4305. [Google Scholar] [CrossRef]
- Huang, Y.; Fu, H.; Vorobyov, S.A.; Luo, Z.Q. Robust adaptive beamforming via worst-case sinr maximization with nonconvex uncertainty sets. IEEE Trans. Signal Process. 2023, 71, 218–232. [Google Scholar] [CrossRef]
- Gu, Y.; Leshem, A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 2012, 60, 3881–3884. [Google Scholar]
- Meng, Z.; Dong, S.; Shi, X.; Wang, X. Robust beamforming for non-circular signals in uniform linear arrays with unknown mutual couplin. Digit. Signal Process. 2022, 122, 103378. [Google Scholar] [CrossRef]
- Li, H.; Geng, J.; Xie, J. Robust adaptive beamforming based on covariance matrix reconstruction with RCB principle. Digit. Signal Process. 2022, 127, 103565. [Google Scholar] [CrossRef]
- Meng, Z.; Zhou, W. Robust adaptive beamforming for coprime array with steering vector estimation and covariance matrix reconstruction. IET Commun. 2020, 14, 2749–2758. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, F.; Huang, L.; Liu, Z.; Wang, F. Carrier phase bias correction for GNSS space-time array processing using time-delay data. GPS Solut. 2023, 27, 113. [Google Scholar] [CrossRef]
- Hao, F.; Li, X.; Wang, W.; Zhao, J. A STAP anti-interference technology with zero phase bias in wireless IoT systems based on high-precision positioning. Front. Phys. 2023, 11, 284. [Google Scholar] [CrossRef]
- Stenberg, N.; Axell, E.; Rantakokko, J.; Hendeby, G. Results on GNSS spoofing mitigation using multiple receivers. Navig. J. Inst. Navig. 2022, 69, navi.510. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; Huang, L.; Xiao, Z.; Wang, F. Distortionless pseudo-code tracking space-time adaptive processor based on the PI criterion for GNSS receiver. IET Radar Sonar Navig. 2020, 14, 1984–1990. [Google Scholar] [CrossRef]
- Brachvogel, M.; Niestroj, M.; Meurer, M.; Hasnain, S.N.; Stephan, R.; Hein, M.A. Space-time adaptive processing as a solution for mitigating interference using spatially-distributed antenna arrays. Navig. J. Inst. Navig. 2023, 70, navi.592. [Google Scholar] [CrossRef]
- Chen, X.; Morton, Y. Iterative subspace alternating projection method for GNSS multipath DOA estimation. IET Radar Sonar Navig. 2016, 10, 1260–1269. [Google Scholar] [CrossRef]
- Ghiasi, Y.; Duguay, C.R.; Murfitt, J.; van der Sanden, J.J.; Thompson, A.; Drouin, H.; Prévost, C. Application of GNSS interferometric reflectometry for the estimation of lake ice thickness. Remote Sens. 2020, 12, 2721. [Google Scholar] [CrossRef]
- Wen, F.; Shi, J.; Zhang, Z. Generalized spatial smoothing in bistatic EMVS-MIMO radar. Signal Process. 2022, 193, 108406. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Z.; Liu, Y. On parameter identifiability of diversity-smoothing-based MIMO radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 1660–1675. [Google Scholar] [CrossRef]
- Pote, R.R.; Rao, B.D. Maximum likelihood-based gridless doa estimation using structured covariance matrix recovery and sbl with grid refinement. IEEE Trans. Signal Process. 2023, 71, 802–815. [Google Scholar] [CrossRef]
- Rahamim, D.; Tabrikian, J.; Shavit, R. Source localization using vector sensor array in a multipath environment. IEEE Trans. Signal Process. 2004, 52, 3096–3103. [Google Scholar] [CrossRef]
- He, J.; Jiang, S.; Wang, J.; Liu, Z. Polarization difference smoothing for direction finding of coherent signals. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 469–480. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, F.; Shi, J.; He, J.; Truong, T.K. 2D-DOA estimation for coherent signals via a polarized uniform rectangular array. IEEE Signal Process. Lett. 2023, 30, 893–897. [Google Scholar] [CrossRef]
- Park, Y.; Gerstoft, P. Gridless sparse covariance-based beamforming via alternating projections including co-prime arrays. J. Acoust. Soc. Am. 2022, 151, 3828–3837. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Zhang, Y.; Zhang, Y.; Huo, W.; Pei, J.; Huang, Y. Target fast reconstruction of real aperture radar using data extrapolation-based parallel iterative adaptive approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2258–2269. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.; Battistelli, G.; Chisci, L. Fast iterative adaptive approach for indoor localization with distributed 5G small cells. IEEE Wirel. Commun. Lett. 2022, 11, 1980–1984. [Google Scholar] [CrossRef]
- Meng, Z.; Zhou, W. Virtual uniform linear iterative adaptive approach for robust adaptive beamforming. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 2980–2985. [Google Scholar]
- Yang, X.; Xie, J.; Li, H.; He, Z. Robust adaptive beamforming of coherent signals in the presence of the unknown mutual coupling. IET Commun. 2018, 12, 75–81. [Google Scholar] [CrossRef]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Amiri-Simkooei, A.R.; Tiberius, C.C.J.M. Assessing receiver noise using GPS short baseline time series. GPS Solut. 2007, 11, 21–35. [Google Scholar] [CrossRef]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Liu, H. A robust STAP method for airborne radar based on clutter covariance matrix reconstruction and steering vector estimation. Digit. Signal Process. 2018, 78, 82–91. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Shen, F. Robust Space-Time Adaptive Processing Method for GNSS Receivers in Coherent Signal Environments. Remote Sens. 2023, 15, 4212. https://doi.org/10.3390/rs15174212
Meng Z, Shen F. Robust Space-Time Adaptive Processing Method for GNSS Receivers in Coherent Signal Environments. Remote Sensing. 2023; 15(17):4212. https://doi.org/10.3390/rs15174212
Chicago/Turabian StyleMeng, Zhen, and Feng Shen. 2023. "Robust Space-Time Adaptive Processing Method for GNSS Receivers in Coherent Signal Environments" Remote Sensing 15, no. 17: 4212. https://doi.org/10.3390/rs15174212
APA StyleMeng, Z., & Shen, F. (2023). Robust Space-Time Adaptive Processing Method for GNSS Receivers in Coherent Signal Environments. Remote Sensing, 15(17), 4212. https://doi.org/10.3390/rs15174212