Accuracy Assessment of Atmospheric Correction of KMSS-2 Meteor-M #2.2 Data over Northern Eurasia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data Acquisition
2.2. Methodology
2.2.1. MODIS Data Processing
2.2.2. KMSS Data Processing
2.2.3. Accuracy Assessment Framework
2.2.4. Samples Density Map
3. Results
3.1. MODIS Gap-Free Daily Coverage
3.2. KMSS Data Processing
3.3. APU Database
3.4. Accuracy Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APU | Accuracy, Precision, Uncertainty |
BRDF | Bidirectional Reflectance Distribution Function |
CCD | Charge-Coupled Device |
CCU | Center for Collective Use |
DOS | Dark Object Subtraction |
FLAASH | Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes |
IKI | “Institut Kosmicheskikh Issledovanii”, which stands for Space Research Institute |
KMSS | “Kompleks Mnogozonal’noi Sputnikovoi S”emki”, which stands for Multispectral Satellite Imaging System |
LOWESS | Locally Weighted Scatterplot Smoothing |
LP DAAC | Land Processes Distributed Active Archive Center |
LULC | Land Use Land Cover |
MAE | Mean Average Error |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSI | Multispectral Instrument |
MSU | “Mnogozonal’noe Skaniruyushchee Ustroistvo”, which stands for Multispectral Scanning Device |
MW | Mean Weighted |
NDSI | Normalized Difference Snow Index |
NDVI | Normalized Difference Vegetation Index |
OLI | Operational Land Imager |
PCF | Pearson Correlation Factor |
SRC | Scientific Research Centre |
References
- Polyanskiy, I.V.; Zhukov, B.S.; Kondratieva, T.V.; Prokhorova, S.A.; Smetanin, P.S. Medium-resolution multispectral satellite imaging system for hygrometeorological spacecraft. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2019, 16, 83–92. [Google Scholar] [CrossRef]
- Zhukov, B.S.; Kondratieva, T.V.; Polyanskiy, I.V. Interannual sensitivity trend of the cameras of the multispectral satellite imaging system KMSS-M on Meteor-M No. 2 spacecraft based on the in-flight calibration in 2015–2020. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2021, 18, 53–60. [Google Scholar] [CrossRef]
- Wang, L.; Dong, T.; Zhang, G.; Niu, Z. LAI retrieval using PROSAIL model and optimal angle combination of multi-angular data in wheat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1730–1736. [Google Scholar] [CrossRef]
- Liu, Q.; Liang, S.; Xiao, Z.; Fang, H. Retrieval of leaf area index using temporal, spectral, and angular information from multiple satellite data. Remote Sens. Environ. 2014, 145, 25–37. [Google Scholar] [CrossRef]
- Roosjen, P.P.; Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Kooistra, L.; Clevers, J.G. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi- angle spectral data–potential of unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 14–26. [Google Scholar] [CrossRef]
- Kolbudaev, P.A.; Plotnikov, D.E.; Loupian, E.A.; Proshin, A.A.; Matveev, A.M. The methods and automatic technology aimed at imagery georeferencing, cloud screening, atmospheric and radiometric correction of KMSS-M satellite data. E3S Web Conf. 2021, 333, 01006. [Google Scholar] [CrossRef]
- Kondratieva, T.V.; Zhukov, B.S.; Polyanskiy, I.V. Radiometric characteristics of multispectral satellite imaging systems KMSS-M on board Meteor-M No. 2 and KMSS-2 on board Meteor-M No. 2-2 satellites. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2020, 17, 67–78. [Google Scholar] [CrossRef]
- Plotnikov, D.E.; Kolbudaev, P.A.; Zhukov, B.S.; Matveev, A.A.; Bartalev, S.A.; Egorov, V.A.; Kashnitskiy, A.V.; Proshin, A.A. The collection of multispectral KMSS-M (Meteor-M No. 2) satellite data aimed at quantitative assessment of the Earth surface. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2020, 17, 256–262. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, M.; Zeng, H.; Tian, F.; Potgieter, A.B.; Yan, N.; Chang, S.; Zhao, Y.; Dong, Q.; Boken, V.; et al. Challenges and opportunities in remote sensing-based crop monitoring: A review. Natl. Sci. Rev. 2023, 10, nwac290. [Google Scholar] [CrossRef]
- Waldner, F.; Schucknecht, A.; Lesiv, M.; Gallego, J.; See, L.; Pérez-Hoyos, A.; d’Andrimont, R.; de Maet, T.; Laso Bayas, J.C.; Fritz, S.; et al. Conflation of expert and crowd reference data to validate global binary thematic maps. Remote Sens. Environ. 2019, 221, 235–246. [Google Scholar] [CrossRef]
- Waldner, F.; De Abelleyra, D.; Santiago, V.; Zhang, M.; Wu, B.; Plotnikov, D.E.; Bartalev, S.A.; Lavreniuk, M.; Skakun, S.; Kussul, N.N.; et al. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. Int. J. Remote Sens. 2016, 37, 3196–3231. [Google Scholar] [CrossRef]
- Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al. Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sens. 2015, 7, 3907–3933. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; Abelleyra, D.D.; Ferraz, R.P.; Lebourgeois, V.; Lelong, C.C.; Simões, M.; Verón, S.R. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Plotnikov, D.E.; Khvostikov, S.A.; Bartalev, S.A. Method for automated crop types mapping using remote sensing data and a plant growth simulation model. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2018, 15, 131–141. [Google Scholar] [CrossRef]
- Shabanov, N.V.; Bartalev, S.A.; Eroshenko, F.V.; Plotnikov, D.E. Development of capabilities for remote sensing estimate of Leaf Area Index from MODIS data. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2018, 15, 166–178. [Google Scholar] [CrossRef]
- Plotnikov, D.E.; Kolbudaev, P.A.; Bartalev, S.A. Identification of dynamically homogeneous areas with time series segmentation of remote sensing data. Comput. Opt. 2018, 42, 447–456. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, D.; Zhang, B.; Fu, Z.; Li, B.; Zhang, S. An Operational Atmospheric Correction Framework for Multi-Source Medium-High-Resolution Remote Sensing Data of China. Remote Sens. 2022, 14, 5590. [Google Scholar] [CrossRef]
- Todorov, V.; Dimov, I. Unveiling the Power of Stochastic Methods: Advancements in Air Pollution Sensitivity Analysis of the Digital Twin. Atmosphere 2023, 14, 1078. [Google Scholar] [CrossRef]
- Zhu, W.; Xia, W. Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment. Remote Sens. 2023, 15, 1907. [Google Scholar] [CrossRef]
- Todorov, V.; Dimov, I.; Ostromsky, T.; Zlatev, Z.; Georgieva, R.; Poryazov, S. Optimized Quasi-Monte Carlo Methods Based on Van der Corput Sequence for Sensitivity Analysis in Air Pollution Modelling. In Recent Advances in Computational Optimization. WCO 2020. Studies in Computational Intelligence; Fidanova, S., Ed.; Springer: Cham, Switzerland, 2022; Volume 986. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.-C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [PubMed]
- Colin, J.; Hagolle, O.; Landier, L.; Coustance, S.; Kettig, P.; Meygret, A.; Osman, J.; Vermote, E. Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance Estimates. Remote Sens. 2023, 15, 2665. [Google Scholar] [CrossRef]
- Bourtsev, M.A.; Milekhin, O.E.; Kramareva, L.S.; Antonov, V.N.; Balashov, I.V.; Kashnitskiy, A.V.; Loupian, E.A.; Matveev, A.M.; Proshin, A.A.; Uspensky, S.A. SRC “Planeta” United System for Distributed Data Handling: Actual Features and Future Evolution. Inf. Technol. Remote Sens. Earth-RORSE 2018, 2019, 374–379. [Google Scholar]
- Loupian, E.A.; Milexin, O.E.; Antonov, V.N.; Kramareva, L.S.; Bourtsev, M.A.; Balashov, I.V.; Tolpin, V.A.; Solovyev, V.I. System of operation of joint information resources based on satellite data in the Planeta Research Centers for Space Hydrometeorology. Russ. Meteorol. Hydrol. 2014, 39, 847–853. [Google Scholar] [CrossRef]
- Loupian, E.A.; Proshin, A.A.; Bourtsev, M.A.; Balashov, I.V.; Bartalev, S.A.; Efremov, V.Y.; Kashnitskiy, A.V.; Mazurov, A.A.; Matveev, A.M.; Sudneva, O.A.; et al. IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2015, 12, 263–284. [Google Scholar]
- CCU “IKI-Monitoring” Archives Page. Available online: http://ckp.geosmis.ru/default.aspx?page=6 (accessed on 24 May 2023).
- Loupian, E.A.; Proshin, A.A.; Balashov, I.V.; Bourtsev, M.A.; Kashnitskiy, A.V.; Tolpin, V.A.; Mazurov, A.A.; Matveev, A.M.; Uvarov, I.A. Center for Collective Usage “IKI-Monitoring” (Organization of Distributed Work with Extra Large Archives of Satellite Data for Solving Scientific and Applied Tasks). Inf. Technol. Remote Sens. Earth-RORSE 2018, 2019, 380–387. [Google Scholar] [CrossRef]
- LPDAAC Page. Available online: https://www.earthdata.nasa.gov/eosdis/daacs/lpdaac (accessed on 24 May 2023).
- Plotnikov, D.E.; Loupian, E.A.; Kolbudaev, P.A.; Proshin, A.A.; Matveev, A.M. Daily surface reflectance reconstruction using LOWESS on the example of various satellite systems. In Proceedings of the 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russia, 23–27 May 2022. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Plotnikov, D.E.; Kolbudaev, P.A.; Loupian, E.A. An automatic method for subpixel registration of KMSS-M imagery based on coarse-resolution actualized reference. Comput. Opt. 2022, 46, 818–827. [Google Scholar] [CrossRef]
Characteristic | KMSS-M (Meteor-M #2) | KMSS-2 (Meteor-M #2.2) |
---|---|---|
Technique | Pushbroom | Pushbroom |
Altitude | 832 km | 820 km |
Spectral bands | Green: 0.535–0.575 μm Red: 0.630–0.680 μm NIR: 0.760–0.900 μm | Green: 0.520–0.590 μm Red: 0.640–0.690 μm NIR: 0.785–0.900 μm |
Spatial resolution at nadir | 60 m | 55 m |
Revisiting rate | 5 days | 5 days |
Radiometric resolution | 8 bit | 10 bit |
Total swath | 960 km | 1020 km |
Cloudiness Level | Accuracy MW 1 RED/NIR | Precision MW RED/NIR | Uncertainty MW RED/NIR |
---|---|---|---|
5% | 0.0070/0.0044 | 0.0286/0.0339 | 0.0296/0.0348 |
20% | 0.0065/0.0038 | 0.0287/0.0370 | 0.0295/0.0379 |
50% | 0.0059/0.0034 | 0.0277/0.0384 | 0.0285/0.0394 |
Season | MW 1 Accuracy, 10−2 | MW Precision, 10−2 | WM Uncertainty, 10−2 | |||
---|---|---|---|---|---|---|
Red | NIR | Red | NIR | Red | NIR | |
January–May | 0.03–3.42 | −0.13–1.94 | 0.82–6.27 | 1.88–5.60 | 0.84–6.98 | 1.90–5.98 |
June–August | −0.01–0.22 | −0.44–0.53 | 0.70–2.17 | 2.41–5.17 | 0.71–2.25 | 2.45–5.35 |
September–December | −0.03–1.63 | −0.12–0.83 | 0.78–4.55 | 1.57–4.29 | 0.80–4.88 | 1.58–4.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plotnikov, D.; Kolbudaev, P.; Matveev, A.; Proshin, A.; Polyanskiy, I. Accuracy Assessment of Atmospheric Correction of KMSS-2 Meteor-M #2.2 Data over Northern Eurasia. Remote Sens. 2023, 15, 4395. https://doi.org/10.3390/rs15184395
Plotnikov D, Kolbudaev P, Matveev A, Proshin A, Polyanskiy I. Accuracy Assessment of Atmospheric Correction of KMSS-2 Meteor-M #2.2 Data over Northern Eurasia. Remote Sensing. 2023; 15(18):4395. https://doi.org/10.3390/rs15184395
Chicago/Turabian StylePlotnikov, Dmitry, Pavel Kolbudaev, Alexey Matveev, Andrey Proshin, and Ivan Polyanskiy. 2023. "Accuracy Assessment of Atmospheric Correction of KMSS-2 Meteor-M #2.2 Data over Northern Eurasia" Remote Sensing 15, no. 18: 4395. https://doi.org/10.3390/rs15184395
APA StylePlotnikov, D., Kolbudaev, P., Matveev, A., Proshin, A., & Polyanskiy, I. (2023). Accuracy Assessment of Atmospheric Correction of KMSS-2 Meteor-M #2.2 Data over Northern Eurasia. Remote Sensing, 15(18), 4395. https://doi.org/10.3390/rs15184395