Unraveling Regional Patterns of Sea Level Acceleration over the China Seas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tide Gauge Records
2.2. Satellite Altimetry
2.3. Steric Component
2.4. Mass Component
2.5. Climate Indexes
2.6. Methods
3. Results
3.1. Estimates of Sea Level Acceleration along the Coast of China
3.2. Patterns in Regional Sea Level Acceleration
4. Discussion
4.1. The Robustness of Coastal Sea-Level-Acceleration Estimation
4.2. Determining Drivers for Sea Level Acceleration over the China Seas
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, R.P.; Hawkins, E.; Bellouin, N.; Collins, B. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Jackson, L.P.; Grinsted, A.; Riva, R.; Moore, J.C. Coastal sea-level rise with warming above 2 degree. Proc. Natl. Acad. Sci. USA 2016, 113, 13342–13347. [Google Scholar] [CrossRef]
- Abadie, L.M.; Jackson, L.P.; Murieta, E.S.D.; Jevrejeva, S.; Galarraga, I. Comparing urban coastal flood risk in 136 cities under two alternative sea-level projections: RCP 8.5 and an expert opinion-based high-end scenario. Ocean Coast. Manag. 2020, 193, 105249. [Google Scholar] [CrossRef]
- Qu, Y.; Jevrejeva, S.; Williams, J.; Moore, J.C. Drivers for seasonal variability in sea level around the China seas. Glob. Planet. Chang. 2022, 213, 103819. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 2006, 33, L01602. [Google Scholar] [CrossRef]
- Haigh, I.D.; Wahl, T.; Rohling, E.J.; Price, R.M.; Pattiaratchi, C.B.; Calafat, F.M.; Dangendorf, S. Timescales for detecting a significant acceleration in sea-level rise. Nat. Commun. 2014, 5, 3635. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.C.; Horton, B.P.; Donnelly, J.P.; Mann, M.E.; Vermeer, M.; Rahmstorf, S. Climate related sea-level variations over the past two millennia. Proc. Natl. Acad. Sci. USA 2011, 108, 11017–11022. [Google Scholar] [CrossRef] [PubMed]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A.; Woodworth, P.L. Recent global sea-level acceleration started 200 years ago? Geophys. Res. Lett. 2008, 35, L08715. [Google Scholar] [CrossRef]
- Woodworth, P.L.; White, N.J.; Jevrejeva, S.; Holgate, S.J.; Church, J.A.; Gehrels, W.R. Evidence for the accelerations of sea level on multi- decade and century timescales. Int. J. Climatol. 2009, 29, 777–789. [Google Scholar] [CrossRef]
- Feng, X.; Tsimplis, M.N. Sea level extremes at the coasts of China. J. Geophys. Res. Ocean. 2014, 119, 1593–1608. [Google Scholar] [CrossRef]
- He, Q.; Bertness, M.D.; Bruno, J.F.; Li, B.; Chen, G.; Coverdale, T.C.; Altieri, A.H.; Bai, J.; Sun, T.; Pennings, S.C.; et al. Economic development and coastal ecosystem change in China. Sci. Rep. 2014, 4, 5995. [Google Scholar] [CrossRef]
- Chen, C.; Zuo, J.; Chen, M.; Gao, Z.-G.; Shum, C.-K. Sea level change under IPCC-A2 scenario in Bohai, Yellow and East China Seas. Water Sci. Eng. 2014, 7, 446–456. [Google Scholar]
- Qu, Y.; Jevrejeva, S.; Jackson, L.P.; Moore, J.C. Coastal sea level rise around the China Seas. Glob. Planet. Chang. 2018, 172, 454–463. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Hamlington, B.D.; Frederikse, T.; Nerem, R.S.; Fasullo, J.T.; Adhikari, S. Investigating the acceleration of re gional sea level rise during the satellite altimeter era. Geophys. Res. Lett. 2020, 47, e2019GL086528. [Google Scholar] [CrossRef]
- Moreira, L.; Cazenave, A.; Palanisamy, H. Influence of interannual variability in estimating the rate and acceleration of present-day global mean sea level. Glob. Planet. Chang. 2021, 199, 103450. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J.P. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- Permanent Service for Mean Sea Level (PSMSL). Tide Gauge Data. 2022. Available online: http://www.psmsl.org/data/obtaining/ (accessed on 21 March 2022).
- Ding, X.; Zheng, D.; Chen, Y.; Chao, J.; Li, Z. Sea level change in Hong Kong from tide gauge measurements of 1954–1999. J. Geod. 2001, 74, 683–689. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437e470. [Google Scholar] [CrossRef]
- Cheng, L.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Abraham, J.; Zhu, J. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 2017, 3, e1601545. [Google Scholar] [CrossRef]
- Cheng, L.; Zhu, J.; Cowley, R.; Boyer, T.; Wijffels, S. Time, Probe Type, and Temperature Variable Bias Corrections to Historical Expendable Bathythermograph Observations. J. Atmos. Ocean. Technol. 2014, 31, 8. [Google Scholar] [CrossRef]
- Tapley, D.B.; Bettadpur, S.; Ries, J.C. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef]
- Chambers, D.P. Observing seasonal steric sea level variations with GRACE and altimetry. J. Geophys. Res. 2006, 111, C03010. [Google Scholar] [CrossRef]
- Cheng, X.; Li, L.; Du, Y.; Wang, J.; Huang, R.-X. Mass-induced sea level change in the northwestern North Pacific and its contribution to total sea level change. Geo. Res. Lett. 2013, 40, 3975–3980. [Google Scholar] [CrossRef]
- Royston, S.; Watson, C.S.; Legresy, B.; King, M.A.; Church, J.A.; Bos, M.S. Sea-level trend uncertainty with Pacific climatic variability and temporally-correlated noise. J. Geophys. Res. Ocean. 2018, 123, 1978–1993. [Google Scholar] [CrossRef]
- Zhang, L.; Delworth, T.L. Analysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics Laboratory. J. Clim. 2015, 28, 7678–7701. [Google Scholar] [CrossRef]
- Veng, T.; Andersen, O.B. Consolidating sea level acceleration estimates from satellite altimetry. Adv. Space Res. 2020, 68, 496–503. [Google Scholar] [CrossRef]
- Wang, J.; Church, J.A.; Zhang, X.; Chen, X. Reconciling global mean and regional sea level change in projections and observations. Nat. Commun. 2021, 12, 990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Church, J.A. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett. 2012, 39, L21701. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Ezer, T.; Hamlington, B.D. Sea Level Acceleration in the China Seas. Water 2016, 8, 293. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef]
- Calafat, F.M.; Chambers, D.P. Quantifying recent acceleration in sea-level unrelated to internal climate variability. Geophys. Res. Lett. 2013, 40, 3661–3666. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Chang. 2017, 7, 492–495. [Google Scholar] [CrossRef]
- Dangendorf, S.; Rybski, D.; Mudersbach, C.; Müller, A.; Kaufmann, E.; Zorita, E.; Jensen, J. Evidence for long-term memory in sea-level. Geophys. Res. Lett. 2014, 41, 5530–5537. [Google Scholar] [CrossRef]
- Han, W.; Meehl, G.A.; Stammer, D.; Hu, A.; Hamlington, B.; Kenigson, J.; Palanisamy, H.; Thompson, P. Spatial patterns of sea-level variability associated with natural internal climate modes. Surv. Geophys. 2017, 38, 217–250. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, M.; Schröter, J. Reconstruction of regional mean sea level anomalies from 595 tide gauges using neural networks. J. Geophys. Res. Atmos. 2010, 115, C08013. [Google Scholar] [CrossRef]
- Douglas, B.C. Global sea level acceleration. J. Geophys. Res. 1992, 97, 12699–12706. [Google Scholar] [CrossRef]
- Woodworth, P.L. A search for accelerations in records of European mean sea level. Int. J. Clin Matology 1990, 10, 129–143. [Google Scholar] [CrossRef]
- Houston, J.R. Sea-Level Acceleration: Analysis of the World’s High-Quality Tide Gauges. J. Coast. Res. 2021, 37, 272–279. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Grinsted, A.; Moore, J.C.; Holgate, S. Nonlinear trends and multiyear cycles in sea level records. J. Geophys. Res. 2006, 111, C09012. [Google Scholar] [CrossRef]
- Holgate, S.J. On the decadal rates of sea level change during the twentieth century. Geophys. Res. Lett. 2007, 34, L01602. [Google Scholar] [CrossRef]
- Bromirski, P.D.; Miller, A.J.; Flick, R.E.; Auad, G. Dynamical suppression of sea level rise along the Pacific Coast of North America: Indications for imminent acceleration. J. Geophys. Res. Ocean. 2011, 116, C7. [Google Scholar] [CrossRef]
- Sturges, W.; Douglas, B.C. Wind effects on estimates of sea level rise. J. Geophys. Res. Ocean. 2011, 116, C06008. [Google Scholar] [CrossRef]
- Iz, H.B.; Shum, C.K. Minimum record length for detecting a prospective uniform sea level acceleration at a tide gauge station. All. Earth 2022, 34, 8–15. [Google Scholar] [CrossRef]
- The Climate Change Initiative Coastal Sea Level Team. Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002–2018. Sci. Data 2020, 7, 357. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, X.; Qin, J.; Zhou, G.; Jiang, L. The dynamic mechanism of sea level variations in the Bohai Sea and Yellow Sea. Clim. Dyn. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Sakamoto, T.T.; Hasumi, H.; Ishii, M.; Emori, S.; Suzuki, T.; Nishimura, T.; Sumi, A. Responses of the Kuroshio and the Kuroshio Extension to global warming in a high-resolution climate model. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Cheng, X.; Zhao, M.; Duan, W.; Jiang, L.; Chen, J.; Yang, C.; Zhou, Y. Regime shift of the sea level trend in the South China Sea modulated by the tropical Pacific decadal variability. Geophys. Res. Lett. 2023, 50, e2022GL102708. [Google Scholar] [CrossRef]
Station Name | Longitude (°E) | Latitude (°N) | Time Span | Completeness (%) | Record Length in Years | Acceleration (mm/yr2) |
---|---|---|---|---|---|---|
Qinhuangdao | 119.60 | 39.90 | 1950–1994 | 99 | 45 | 0.04 ± 0.06 |
Tanggu | 117.72 | 39.00 | 1975–1994 | 100 | 20 | 2.08 ± 0.54 |
Dalian | 121.68 | 38.87 | 1970–2021 | 97 | 52 | 0.05 ± 0.04 |
Yantai | 121.38 | 37.53 | 1954–1994 | 100 | 41 | −0.33 ± 0.12 |
Shijiusu | 119.55 | 35.38 | 1975–1994 | 100 | 20 | 1.02 ± 0.32 |
Lianyungan | 119.45 | 34.75 | 1975–1994 | 100 | 20 | 1.50 ± 0.38 |
Lusi | 121.62 | 32.13 | 1969–2020 | 93 | 52 | −0.05 ± 0.04 |
Kanmen | 121.28 | 28.08 | 1959–2021 | 99 | 63 | 0.08 ± 0.03 |
Xiamen | 118.07 | 24.45 | 1954–2004 | 100 | 51 | 0.00 ± 0.05 |
Shanwei | 115.35 | 22.75 | 1975–1994 | 100 | 20 | 0.55 ± 0.40 |
Zhapo | 111.82 | 21.58 | 1959–2021 | 99 | 63 | 0.05 ± 0.03 |
Beinhai | 109.08 | 21.48 | 1975–1994 | 100 | 20 | 0.20 ± 0.30 |
Xi Sha | 112.33 | 16.83 | 1990–2021 | 99 | 32 | 0.09 ± 0.23 |
Nan Sha | 112.88 | 9.55 | 1998–2021 | 83 | 24 | 0.38 ± 0.27 |
Macau | 113.55 | 22.20 | 1925–1985 | 96 | 61 | −0.09 ± 0.04 |
NPQB | 114.21 | 22.29 | 1950–2020 | 99 | 71 | 0.11 ± 0.02 |
Tai Po Kau | 114.18 | 22.44 | 1963–2020 | 95 | 58 | 0.07 ± 0.04 |
Tsim Bei Tsui | 114.01 | 22.49 | 1974–2020 | 84 | 47 | 0.24 ± 0.07 |
Tai Miu Wan | 114.29 | 22.27 | 1997–2020 | 94 | 24 | 0.23 ± 0.41 |
Shek Pik | 113.89 | 22.22 | 1998–2020 | 97 | 23 | 0.41 ± 0.32 |
Keelung II | 121.73 | 25.13 | 1956–1995 | 100 | 40 | 0.43 ± 0.05 |
Tide Gauge | Time of Span | 1970–2020 | 1993–2020 | |||
---|---|---|---|---|---|---|
TG a | ST b | TG | AL c | ST | ||
Dalian | 1970–2021 | 0.04 ± 0.04 | 0.04 ± 0.01 | −0.05 ± 0.15 | 0.03 ± 0.03 | −0.04 ± 0.03 |
Lusi | 1969–2020 | −0.07 ± 0.04 | N/A d | −0.07 ± 0.19 | −0.23 ± 0.01 | −0.00 ± 0.01 |
Kanmen | 1959–2021 | 0.15 ± 0.04 | N/A d | 0.30 ± 0.20 | −0.41 ± 0.01 | −0.03 ± 0.01 |
Zhapo | 1959–2021 | 0.11 ± 0.04 | N/A d | 0.22 ± 0.20 | −0.11 ± 0.20 | −0.08 ± 0.03 |
Xi Sha | 1990–2021 | 0.02 ± 0.24 ※ | 0.01 ± 0.03 ※ | 0.14 ± 0.31 | −0.38 ± 0.12 | −0.30 ± 0.12 |
NPQB | 1950–2020 | 0.05 ± 0.05 | N/A d | 0.02 ± 0.20 | 0.17 ± 0.02 | −0.06 ± 0.02 |
Tai Po Kau | 1963–2020 | 0.17 ± 0.05 | N/A d | 0.26 ± 0.20 | 0.18 ± 0.02 | −0.06 ± 0.02 |
Tsim Bei Tsui | 1974–2020 | 0.22 ± 0.07 ※ | N/A d,※ | 0.29 ± 0.23 | 0.18 ± 0.02 | −0.06 ± 0.02 |
1993–2012 | 1994–2013 | 1995–2014 | 1996–2015 | 1997–2016 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Tide Gauge | Before | After | Before | After | Before | After | Before | After | Before | After |
Dalian | −0.27 | −0.28 | −0.13 | −0.06 | −0.15 | −0.11 | −0.05 | −0.10 | 0.19 | 0.04 |
Lusi | 0.10 | 0.08 | −0.08 | 0.16 | 0.19 | 0.51 | 0.61 | 0.86 | 1.19 | 1.24 |
Kanmen | 0.62 | 0.62 | 0.47 | 0.68 | 0.77 | 1.01 | 0.93 | 1.20 | 1.26 | 1.44 |
Zhapo | 0.03 | 0.06 | 0.44 | 0.59 | 0.37 | 0.75 | 0.35 | 1.03 | 0.75 | 1.42 |
Xi Sha | 0.38 | 0.43 | 0.35 | 0.44 | 0.31 | 0.56 | 0.23 | 0.92 | −0.01 | 0.92 |
NPQB | −0.30 | −0.25 | 0.44 | 0.61 | 0.80 | 1.10 | 0.93 | 1.52 | 1.14 | 1.78 |
Tai Po Kau | 0.62 | 0.63 | 1.29 | 1.23 | 1.35 | 1.46 | 0.89 | 1.35 | 0.89 | 1.42 |
Tsim Bei Tsui | 0.63 | 0.66 | 0.47 | 0.71 | −0.28 | 0.38 | −0.53 | 0.47 | −0.02 | 0.87 |
1998–2017 | 1999–2018 | 2000–2019 | 2001–2020 | |||||||
Tide Gauge | Before | After | Before | After | Before | After | Before | After | ||
Dallian | 0.22 | 0.17 | 0.00 | 0.06 | 0.20 | 0.11 | 0.46 | 0.34 | ||
Lusi | 0.61 | 0.74 | 0.18 | 0.27 | 0.03 | −0.12 | −0.06 | −0.17 | ||
Kanmen | 1.11 | 1.31 | 0.59 | 0.71 | 0.34 | 0.28 | 0.11 | −0.01 | ||
Zhapo | 1.04 | 1.50 | 1.16 | 1.45 | 1.02 | 1.22 | 0.70 | 0.79 | ||
Xi Sha | 0.26 | 0.73 | −0.17 | −0.03 | 0.33 | 0.81 | 0.02 | 0.52 | ||
NPQB | 1.30 | 1.68 | 1.19 | 1.34 | 0.67 | 0.78 | 0.29 | 0.26 | ||
Tai Po Kau | 0.81 | 1.23 | 0.46 | 0.66 | 0.26 | 0.42 | 0.21 | 0.21 | ||
Tsim Bei Tsui | 0.20 | 0.94 | 0.39 | 0.92 | 0.34 | 0.75 | 0.14 | 0.26 |
1993–2012 | 1994–2013 | 1995–2014 | 1996–2015 | 1997–2016 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Tide Gauge | Before | After | Before | After | Before | After | Before | After | Before | After |
Dalian | −0.09 | −0.10 | −0.05 | −0.07 | −0.08 | −0.11 | −0.09 | −0.14 | 0.00 | −0.05 |
Lusi | −0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 |
Kanmen | −0.10 | −0.09 | −0.06 | −0.04 | −0.06 | −0.03 | −0.04 | 0.01 | 0.02 | 0.07 |
Zhapo | −0.08 | −0.07 | 0.02 | 0.06 | −0.01 | 0.07 | 0.01 | 0.11 | 0.04 | 0.14 |
Xi Sha | −0.07 | −0.05 | 0.16 | 0.23 | 0.25 | 0.45 | 0.32 | 0.72 | 0.20 | 0.68 |
NPQB | −0.08 | −0.07 | 0.00 | 0.03 | −0.03 | 0.04 | 0.00 | 0.09 | 0.02 | 0.11 |
Tai Po Kau | −0.08 | −0.07 | 0.00 | 0.03 | −0.03 | 0.04 | 0.00 | 0.09 | 0.02 | 0.11 |
Tsim Bei Tsui | −0.08 | −0.07 | 0.00 | 0.03 | −0.03 | 0.04 | 0.00 | 0.09 | 0.02 | 0.11 |
1998–2017 | 1999–2018 | 2000–2019 | 2001–2020 | |||||||
Tide Gauge | Before | After | Before | After | Before | After | Before | After | ||
Dalian | 0.01 | −0.03 | 0.03 | 0.00 | 0.01 | −0.02 | 0.07 | 0.06 | ||
Lusi | 0.02 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Kanmen | 0.06 | 0.11 | 0.02 | 0.06 | 0.02 | 0.05 | 0.02 | 0.05 | ||
Zhapo | 0.04 | 0.14 | −0.01 | 0.07 | −0.01 | 0.04 | −0.05 | 0.00 | ||
Xi Sha | 0.18 | 0.50 | −0.26 | −0.06 | −0.36 | −0.13 | −0.46 | −0.26 | ||
NPQB | 0.03 | 0.11 | 0.00 | 0.07 | 0.01 | 0.06 | −0.01 | 0.04 | ||
Tai Po Kau | 0.03 | 0.11 | 0.00 | 0.07 | 0.01 | 0.06 | −0.01 | 0.04 | ||
Tsim Bei Tsui | 0.03 | 0.11 | 0.00 | 0.07 | 0.01 | 0.06 | −0.01 | 0.04 |
Tide Gauge | 1970–2020 | 1993–2020 |
---|---|---|
Dalian | 0.03 ± 0.04 | −0.12 ± 0.16 |
Lusi | −0.03 ± 0.04 | −0.08 ± 0.18 |
Kanmen | 0.15 ± 0.04 | 0.30 ± 0.20 |
Zhapo | 0.07 ± 0.04 | 0.31 ± 0.20 |
Xi Sha | −0.30 ± 0.24 ※ | 0.60 ± 0.31 |
NPQB | 0.01 ± 0.05 | 0.04 ± 0.20 |
Tai Po Kau | 0.13 ± 0.05 | 0.20 ± 0.20 |
Tsim Bei Tsui | 0.26 ± 0.07 ※ | 0.61 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Jevrejeva, S.; Wang, S. Unraveling Regional Patterns of Sea Level Acceleration over the China Seas. Remote Sens. 2023, 15, 4448. https://doi.org/10.3390/rs15184448
Qu Y, Jevrejeva S, Wang S. Unraveling Regional Patterns of Sea Level Acceleration over the China Seas. Remote Sensing. 2023; 15(18):4448. https://doi.org/10.3390/rs15184448
Chicago/Turabian StyleQu, Ying, Svetlana Jevrejeva, and Shijin Wang. 2023. "Unraveling Regional Patterns of Sea Level Acceleration over the China Seas" Remote Sensing 15, no. 18: 4448. https://doi.org/10.3390/rs15184448
APA StyleQu, Y., Jevrejeva, S., & Wang, S. (2023). Unraveling Regional Patterns of Sea Level Acceleration over the China Seas. Remote Sensing, 15(18), 4448. https://doi.org/10.3390/rs15184448