On the Validation of the Rotation Procedure from HEE to MEMFA Reference Frame in the Presence of Alfvén Waves in the Interplanetary Medium
Abstract
:1. Introduction
2. Data and Methods
2.1. The MEMFA Referece Frame Definitions and Rotation Procedure
2.1.1. White Noise + Localized Alfvén Waves
- Identify or define velocity and magnetic field components profiles in the HEE coordinate system.
- Apply the rotation procedure from the HEE to MEMFA coordinate system, using the instantaneous rotation matrix .
- In the MEMFA reference frame, we can easily add the Alfvén waves (with where is the wave vector).
- Use the inverse of the previous rotation matrix, , to come back in the HEE reference frame, knowing that there are Alfvén waves in the signals.
- Add the noise to each component, of both and . Now we have velocity and magnetic field components within Alfvén waves and noise in the HEE reference frame.
- Apply a new rotation procedure from the HEE to MEMFA coordinate system, using the instantaneous rotation matrix and check if this procedure is able to identify Alfvén waves embedded in signals in the presence of noise.
2.1.2. Red Noise + Localized Alfvén Waves
2.2. Monte Carlo Test and Reliability
3. Results of the Applied Procedure on Simulated and Real Case Study
3.1. Application to Syntetic Data
3.2. Application to Real Event
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Acronym List
AW | Alfvén Waves |
CIR | Corotating Interaction Region |
DoY | Day of Year |
EMD | Empirical Mode Decomposition |
HEE | Heliocentric Earth Ecliptic |
HILDCAA | High-Intensity, Long-Duration, Continuous AE Activity |
HSS | High-Speed Stream |
IEF | Interplanetary Electric Field |
IMF | Interplanetary Magnetic Field |
MC | Monte Carlo |
MEMFA | Mean ElectroMagnetic Fields Aligned |
MFA | Mean Field Aligned |
RN | Red Noise |
RR | Rarefaction Region |
SW | Solar Wind |
SNR | Signa to Noise Ration |
WN | White Noise |
References
- Gosling, J.; Hundhausen, A.; Bame, S. Solar wind stream evolution at large heliocentric distances: Experimental demonstration and the test of a model. J. Geophys. Res. 1976, 81, 2111–2122. [Google Scholar] [CrossRef]
- Richardson, I.G. Solar wind stream interaction regions throughout the heliosphere. Living Rev. Sol. Phys. 2018, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Marsch, E.; Tu, C.Y. Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. Space Phys. 1990, 95, 11945–11956. [Google Scholar] [CrossRef]
- Carnevale, G.; Bruno, R.; Marino, R.; Pietropaolo, E.; Raines, J.M. Sudden depletion of Alfvénic turbulence in the rarefaction region of corotating solar wind high-speed streams at 1 AU: Possible solar origin? Astron. Astrophys. 2022, 661, A64. [Google Scholar] [CrossRef]
- Hundhausen, A. Coronal Expansion and Solar Wind; Physics and Chemistry in Space; Springer: Berlin/Heidelberg, Germany, 1972; Volume 5. [Google Scholar]
- Coleman, P.J., Jr. Wave-like phenomena in the interplanetary plasma: Mariner 2. Planet. Space Sci. 1967, 15, 953–973. [Google Scholar] [CrossRef]
- Coleman, P.J., Jr. Turbulence, Viscosity, and Dissipation in the Solar-Wind Plasma. Astrophys. J. 1968, 153, 371. [Google Scholar] [CrossRef]
- Belcher, J.W.; Leverett, D., Jr. Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 1971, 76, 3534–3563. [Google Scholar] [CrossRef]
- Burlaga, L.; Turner, J. Microscale ‘Alfvén waves’ in the solar wind at 1 AU. J. Geophys. Res. 1976, 81, 73–77. [Google Scholar] [CrossRef]
- Del Corpo, A.; Vellante, M.; Heilig, B.; Pietropaolo, E.; Reda, J.; Lichtenberger, J. Observing the cold plasma in the Earth’s magnetosphere with the EMMA network. Ann. Geophys. 2019, 62, GM447. [Google Scholar] [CrossRef]
- Menk, F.W.; Waters, C.L. Magnetoseismology: Ground-Based Remote Sensing of Earth’s Magnetosphere; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar] [CrossRef]
- Chi, P.J.; Russell, C.T. Travel-time magnetoseismology: Magnetospheric sounding by timing the tremors in space. Geophys. Res. Lett. 2005, 32, L18108. [Google Scholar] [CrossRef]
- Takahashi, K.; Denton, R.E. Magnetospheric Mass Density as Determined by ULF Wave Analysis. Front. Astron. Space Sci. 2021, 8, 708940. [Google Scholar] [CrossRef]
- Jones, A.; Chave, A.; Egbert, G.; Auld, D.; Bahr, K. A comparison of techniques for magnetotelluric response function estimation. J. Geophys. Res. Solid Earth 1989, 94, 201–213. [Google Scholar] [CrossRef]
- Chave, A.D.; Jones, A.G. Introduction to the magnetotelluric method. In The Magnetotelluric Method: Theory and Practice; Chave, A.D., Jones, A.G., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 1–18. [Google Scholar] [CrossRef]
- Regi, M.; De Lauretis, M.; Francia, P. Pc5 geomagnetic fluctuations in response to solar wind excitation and their relationship with relativistic electron fluxes in the outer radiation belt. Earth Planets Space 2015, 67, 9. [Google Scholar] [CrossRef]
- Mann, I.R.; O’Brien, T.P.; Milling, D.K. Correlations between ULF wave power, solar wind speed, and relativistic electron flux in the magnetosphere: Solar cycle dependence. J. Atmos. Sol.-Terr. Phys. 2004, 66, 187–198. [Google Scholar] [CrossRef]
- Blum, L.W.; Halford, A.; Millan, R.; Bonnell, J.W.; Goldstein, J.; Usanova, M.; Engebretson, M.; Ohnsted, M.; Reeves, G.; Singer, H.; et al. Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18–19 January 2013. Geophys. Res. Lett. 2015, 42, 5727–5735. [Google Scholar] [CrossRef]
- Mironova, I.A.; Aplin, K.L.; Arnold, F.; Bazilevskaya, G.A.; Harrison, R.G.; Krivolutsky, A.A.; Nicoll, K.A.; Rozanov, E.V.; Turunen, E.; Usoskin, I.G. Energetic Particle Influence on the Earth’s Atmosphere. Space Sci. Rev. 2015, 194, 1–96. [Google Scholar] [CrossRef]
- Lam, M.M.; Tinsley, B.A. Solar wind-atmospheric electricity-cloud microphysics connections to weather and climate. J. Atmos. Sol.-Terr. Phys. 2016, 149, 277–290. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Gonzalez, A.L.C.; Tang, F.; Arballo, J.K.; Okada, M. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. Space Phys. 1995, 100, 21717–21733. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Gonzalez, A.L.C.; Guarnieri, F.L.; Gopalswamy, N.; Grande, M.; Kamide, Y.; Kasahara, Y.; Lu, G.; Mann, I.; et al. Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D. The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains. Planet. Space Sci. 1987, 35, 405–412. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D. The Interplanetary causes of magnetic storms: A review. Geophys. Monogr. Ser. 1997, 98, 77–89. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Goldstein, B.E.; Smith, E.J.; Gonzalez, W.D.; Tang, F.; Akasofu, S.I.; Anderson, R.R. The interplanetary and solar causes of geomagnetic activity. Planet. Space Sci. 1990, 38, 109–126. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. Turbulence in the Solar Wind; Springer: Berlin/Heidelberg, Germany, 2016; Volume 928. [Google Scholar] [CrossRef]
- Clausen, L.B.N.; Yeoman, T.K.; Fear, R.C.; Behlke, R.; Lucek, E.A.; Engebretson, M.J. First simultaneous measurements of waves generated at the bow shock in the solar wind, the magnetosphere and on the ground. Ann. Geophys. 2009, 27, 357–371. [Google Scholar] [CrossRef]
- Sarris, T.; Li, X.; Singer, H.J. A long-duration narrowband Pc5 pulsation. J. Geophys. Res. Space Phys. 2009, 114, A01213. [Google Scholar] [CrossRef]
- Francia, P.; Regi, M.; De Lauretis, M.; Villante, U.; Pilipenko, V.A. A case study of upstream wave transmission to the ground at polar and low latitudes. J. Geophys. Res. Space Phys. 2012, 117, A01210. [Google Scholar] [CrossRef]
- Francia, P.; De Lauretis, M.; Regi, M. ULF fluctuations observed along the SEGMA array during very low solar wind density conditions. Planet. Space Sci. 2013, 81, 74–81. [Google Scholar] [CrossRef]
- Sonnerup, B.Ö.; Cahill, L., Jr. Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 1967, 72, 171–183. [Google Scholar] [CrossRef]
- De Hoffmann, F.; Teller, E. Magneto-hydrodynamic shocks. Phys. Rev. 1950, 80, 692. [Google Scholar] [CrossRef]
- Regi, M.; Del Corpo, A.; De Lauretis, M. The use of the empirical mode decomposition for the identification of mean field aligned reference frames. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Bruno, R.; Bavassano, B.; Villante, U. Evidence for long period Alfvén waves in the inner solar system. J. Geophys. Res. Space Phys. 1985, 90, 4373–4377. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Echer, E.; Gonzalez, W.D. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): A combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields. Ann. Geophys. 2011, 29, 839–849. [Google Scholar] [CrossRef]
- Elsasser, W.M. Hydromagnetic Dynamo Theory. Rev. Mod. Phys. 1956, 28, 135–163. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2013, 10, 1–208. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Flandrin, P.; Rilling, G.; Goncalves, P. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 2004, 11, 112–114. [Google Scholar] [CrossRef]
- Rilling, G.; Flandrin, P.; Goncalves, P. On empirical mode decomposition and its algorithms. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Grado-Trieste, Italy, 8–11 June 2003; Volume 3, pp. 8–11. [Google Scholar]
- Grappin, R.; Mangeney, A.; Marsch, E. On the origin of solar wind MHD turbulence: Helios data revisited. J. Geophys. Res. Space Phys. 1990, 95, 8197–8209. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Magyar, N.; Van Doorsselaere, T.; Goossens, M. The nature of Elsässer variables in compressible MHD. Astrophys. J. 2019, 873, 56. [Google Scholar] [CrossRef]
- Snekvik, K.; Tanskanen, E.I.; Kilpua, E.K.J. An automated identification method for Alfvénic streams and their geoeffectiveness. J. Geophys. Res. Space Phys. 2013, 118, 5986–5998. [Google Scholar] [CrossRef]
- Prölss, G.W. Ionospheric F-region storms. In Handbook of Atmospheric Electrodynamics, 1st ed.; Volland, H., Ed.; CRC Press: Boca Raton, FL, USA, 1995; Chapter 8; pp. 195–248. [Google Scholar] [CrossRef]
- Spogli, L.; Sabbagh, D.; Regi, M.; Cesaroni, C.; Perrone, L.; Alfonsi, L.; Di Mauro, D.; Lepidi, S.; Campuzano, S.A.; Marchetti, D.; et al. Ionospheric Response Over Brazil to the August 2018 Geomagnetic Storm as Probed by CSES-01 and Swarm Satellites and by Local Ground-Based Observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028368. [Google Scholar] [CrossRef]
- Alfonsi, L.; Cesaroni, C.; Spogli, L.; Regi, M.; Paul, A.; Ray, S.; Lepidi, S.; Di Mauro, D.; Haralambous, H.; Oikonomou, C.; et al. Ionospheric Disturbances Over the Indian Sector During 8 September 2017 Geomagnetic Storm: Plasma Structuring and Propagation. Space Weather 2021, 19, e2020SW002607. [Google Scholar] [CrossRef]
- Regi, M.; Redaelli, G.; Francia, P.; De Lauretis, M. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003–2010. J. Geophys. Res. Atmos. 2017, 122, 6488–6501. [Google Scholar] [CrossRef]
- Voiculescu, M.; Usoskin, I.; Condurache-Bota, S. Clouds blown by the solar wind. Environ. Res. Lett. 2013, 8, 045032. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnevale, G.; Regi, M. On the Validation of the Rotation Procedure from HEE to MEMFA Reference Frame in the Presence of Alfvén Waves in the Interplanetary Medium. Remote Sens. 2023, 15, 4679. https://doi.org/10.3390/rs15194679
Carnevale G, Regi M. On the Validation of the Rotation Procedure from HEE to MEMFA Reference Frame in the Presence of Alfvén Waves in the Interplanetary Medium. Remote Sensing. 2023; 15(19):4679. https://doi.org/10.3390/rs15194679
Chicago/Turabian StyleCarnevale, Giuseppina, and Mauro Regi. 2023. "On the Validation of the Rotation Procedure from HEE to MEMFA Reference Frame in the Presence of Alfvén Waves in the Interplanetary Medium" Remote Sensing 15, no. 19: 4679. https://doi.org/10.3390/rs15194679
APA StyleCarnevale, G., & Regi, M. (2023). On the Validation of the Rotation Procedure from HEE to MEMFA Reference Frame in the Presence of Alfvén Waves in the Interplanetary Medium. Remote Sensing, 15(19), 4679. https://doi.org/10.3390/rs15194679