Investigating the ERA5-Based PWV Products and Identifying the Monsoon Active and Break Spells with Dense GNSS Sites in Guangxi, China
Abstract
:1. Introduction
2. Data and Methodology
2.1. GNSS PWV
2.2. RS PWV
2.3. ERA5 PWV
2.4. Statistical Indicators
3. Results and Discussion
3.1. Evaluation with RS PWV
3.2. Comparison of GNSS PWV and ERA5 PWV
3.2.1. Spatial and Annual PWV Variability
3.2.2. Spatial and Seasonal PWV Variability
3.2.3. Diurnal Variation in PWV
3.3. Active and Break Spells of Monsoon
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colman, R. A comparison of climate feedbacks in general circulation models. Clim. Dyn. 2003, 20, 865–873. [Google Scholar] [CrossRef]
- Soden, B.J.; Held, I.M. An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Clim. 2006, 19, 6263. [Google Scholar] [CrossRef]
- Ziv, S.Z.; Reuveni, Y. Flash Floods Prediction Using Precipitable Water Vapor Derived From GPS Tropospheric Path Delays Over the Eastern Mediterranean. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5804017. [Google Scholar] [CrossRef]
- Jin, S.; Luo, O.F. Variability and Climatology of PWV From Global 13-Year GPS Observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1918–1924. [Google Scholar] [CrossRef]
- Roman, R.; Anton, M.; Cachorro, V.E.; Loyola, D.; Ortiz de Galisteo, J.P.; de Frutos, A.; Romero-Campos, P.M. Comparison of total water vapor column from GOME-2 on MetOp-A against ground-based GPS measurements at the Iberian Peninsula. Sci. Total Environ. 2015, 533, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.K.; Liu, W.; Mo, Z.X.; Zhang, H.X.; Li, J.Y.; Chen, F.D.; Liu, L.L.; Jiang, W.P. A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate. GPS Solut. 2023, 27, 170. [Google Scholar] [CrossRef]
- Tan, J.; Chen, B.; Wang, W.; Yu, W.; Dai, W. Evaluating Precipitable Water Vapor Products From Fengyun-4A Meteorological Satellite Using Radiosonde, GNSS, and ERA5 Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4106512. [Google Scholar] [CrossRef]
- Thandlam, V.; Venkatramana, K. Enhancing Vertical Resolution of Satellite Atmospheric Profile Data: A Machine Learning Approach. Int. J. Adv. Res. 2018, 6, 542–550. [Google Scholar] [CrossRef]
- Sam Khaniani, A.; Nikraftar, Z.; Zakeri, S. Evaluation of MODIS Near-IR water vapor product over Iran using ground-based GPS measurements. Atmos. Res. 2020, 231, 104657. [Google Scholar] [CrossRef]
- Zhao, Q.; Su, J.; Xu, C.; Yao, Y.; Zhang, X.; Wu, J. High-Precision ZTD Model of Altitude-Related Correction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 609–621. [Google Scholar] [CrossRef]
- Zhang, H.X.; Yuan, Y.B.; Li, W. Real-time wide-area precise tropospheric corrections (WAPTCs) jointly using GNSS and NWP forecasts for China. J. Geod. 2022, 96, 44. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, Y.; Li, W. An analysis of multisource tropospheric hydrostatic delays and their implications for GPS/GLONASS PPP-based zenith tropospheric delay and height estimations. J. Geod. 2021, 95, 83. [Google Scholar] [CrossRef]
- Yuan, P.; Van Malderen, R.; Yin, X.A.; Vogelmann, H.; Jiang, W.P.; Awange, J.; Heck, B.; Kutterer, H. Characterisations of Europe’s integrated water vapour and assessments of atmospheric reanalyses using more than 2 decades of ground-based GPS. Atmos. Chem. Phys. 2023, 23, 3517–3541. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res.-Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Ma, X.W.; Yao, W.Q.; Liu, Y.; Yao, Y.B. A Drought Monitoring Method Based on Precipitable Water Vapor and Precipitation. J. Clim. 2020, 33, 10727–10741. [Google Scholar] [CrossRef]
- Manandhar, S.; Lee, Y.H.; Meng, Y.S.; Yuan, F.; Ong, J.T. GPS-Derived PWV for Rainfall Nowcasting in Tropical Region. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4835–4844. [Google Scholar] [CrossRef]
- Wang, H.S.; Liu, Y.B.; Liu, Y.W.; Cao, Y.C.; Liang, H.; Hu, H.; Liang, J.S.; Tu, M.H. Assimilation of GNSS PWV with NCAR-RTFDDA to Improve Prediction of a Landfall Typhoon. Remote Sens. 2022, 14, 178. [Google Scholar] [CrossRef]
- Kang, I.S.; Park, J. Use of GNSS-Derived PWV for Predicting the Path of Typhoon: Case Studies of Soulik and Kongrey in 2018. J. Surv. Eng. 2021, 147, 04021018. [Google Scholar] [CrossRef]
- Guo, A.; Xu, Y.; Jiang, N.; Wu, Y.H.; Gao, Z.R.; Li, S.; Xu, T.H.; Bastos, L. Analyzing correlations between GNSS retrieved precipitable water vapor and land surface temperature after earthquakes occurrence. Sci. Total Environ. 2023, 872, 162225. [Google Scholar] [CrossRef]
- Gurbuz, G.; Aktug, B.; Jin, S.G.; Kutoglu, S.H. A GNSS-based near real time automatic Earth Crust and Atmosphere Monitoring Service for Turkey. Adv. Space Res. 2020, 66, 2854–2864. [Google Scholar] [CrossRef]
- He, Q.M.; Shen, Z.; Wan, M.F.; Li, L.J. Precipitable Water Vapor Converted from GNSS-ZTD and ERA5 Datasets for the Monitoring of Tropical Cyclones. IEEE Access 2020, 8, 87275–87290. [Google Scholar] [CrossRef]
- Gokhan, G.; Jin, S. Evaluation of ocean tide loading effects on GPS-estimated precipitable water vapour in Turkey. Geod. Geodyn. 2016, 7, 32–38. [Google Scholar] [CrossRef]
- Qin, N.X.; Wang, J.N.; Gao, L.; Hong, Y.; Huang, J.L.; Lu, Q.Q. Observed trends of different rainfall intensities and the associated spatiotemporal variations during 1958-2016 in Guangxi, China. Int. J. Climatol. 2021, 41, E2880–E2895. [Google Scholar] [CrossRef]
- Ortiz de Galisteo, J.P.; Cachorro, V.; Toledano, C.; Torres, B.; Laulainen, N.; Bennouna, Y.; de Frutos, A. Diurnal cycle of precipitable water vapor over Spain. Q. J. R. Meteorol. Soc. 2011, 137, 948–958. [Google Scholar] [CrossRef]
- Dai, A.; Wang, J.; Ware, R.H.; Van Hove, T. Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res.-Atmos. 2002, 107, ACL 11-1–ACL 11-14. [Google Scholar] [CrossRef]
- Yadav, R.; Giri, R.K.; Puviarasan, N.; Bhan, S.C. Annual, seasonal, monthly & diurnal IPWV analysis and precipitation forecasting over the Indian subcontinent based on monthly thresholds of ground-based GNSS-IPWV. Adv. Space Res. 2022, 70, 3122–3136. [Google Scholar] [CrossRef]
- Huang, L.K.; Wang, X.; Xiong, S.; Li, J.Y.; Liu, L.L.; Mo, Z.X.; Fu, B.L.; He, H.C. High-precision GNSS PWV retrieval using dense GNSS sites and in-situ meteorological observations for the evaluation of MERRA-2 and ERA5 reanalysis products over China. Atmos. Res. 2022, 276, 106247. [Google Scholar] [CrossRef]
- Shu, B.; He, Y.; Wang, L.; Zhang, Q.; Li, X.; Qu, X.; Huang, G.; Qu, W. Real-time high-precision landslide displacement monitoring based on a GNSS CORS network. Measurement 2023, 217, 113056. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M.J. An evaluation of ERA5 precipitation for climate monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- Jadala, N.B.; Sridhar, M.; Dutta, G.; Yousuf, M.; Reddy, Y.K. Integrated water vapor during active and break spells of monsoon and its relationship with temperature, precipitation and precipitation efficiency over a tropical site. Geod. Geodyn. 2022, 13, 238–246. [Google Scholar] [CrossRef]
- Yang, F.; Guo, J.M.; Meng, X.L.; Shi, J.B.; Xu, Y.; Zhang, D. Determination of Weighted Mean Temperature (Tm) Lapse Rate and Assessment of Its Impact on Tm Calculation. IEEE Access 2019, 7, 155028–155037. [Google Scholar] [CrossRef]
- Yang, P.F.; Zhao, Q.Z.; Li, Z.F.; Yao, W.Q.; Yao, Y.B. High temporal resolution global PWV dataset of 2005-2016 by using a neural network approach to determine the mean temperature of the atmosphere. Adv. Space Res. 2021, 67, 3087–3097. [Google Scholar] [CrossRef]
- Meza, A.; Mendoza, L.; Natali, M.P.; Bianchi, C.; Fernández, L. Diurnal variation of precipitable water vapor over Central and South America. Geod. Geodyn. 2020, 11, 426–441. [Google Scholar] [CrossRef]
- Ye, H.; Fetzer, E.J.; Wong, S.; Behrangi, A.; Olsen, E.T.; Cohen, J.; Lambrigtsen, B.H.; Chen, L. Impact of increased water vapor on precipitation efficiency over northern Eurasia. Geophys. Res. Lett. 2014, 41, 2941–2947. [Google Scholar] [CrossRef]
- Zhu, G.; Huang, L.K.; Liu, L.L.; Li, C.; Li, J.Y.; Huang, L.; Zhou, L.; He, H.C. A New Approach for the Development of Grid Models Calculating Tropospheric Key Parameters over China. Remote Sens. 2021, 13, 3546. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. In The Use of Artificial Satellites for Geodesy; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1972; pp. 247–251. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, W.; Liu, L.; Chen, H.; Ye, S. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor. J. Geod. 2019, 93, 159–176. [Google Scholar] [CrossRef]
- Huang, L.; Liu, L.; Chen, H.; Jiang, W. An improved atmospheric weighted mean temperature model and its impact on GNSS precipitable water vapor estimates for China. GPS Solut. 2019, 23, 51. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhang, B.; Yao, Y.B. An ERA5-Based Model for Estimating Tropospheric Delay and Weighted Mean Temperature Over China With Improved Spatiotemporal Resolutions. Earth Space Sci. 2019, 6, 1926–1941. [Google Scholar] [CrossRef]
- Ding, M.H. A neural network model for predicting weighted mean temperature. J. Geod. 2018, 92, 1187–1198. [Google Scholar] [CrossRef]
- Yao, Y.B.; Zhu, S.; Yue, S.Q. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere. J. Geod. 2012, 86, 1125–1135. [Google Scholar] [CrossRef]
- Zhang, S.K.; Gong, L.; Gao, W.L.; Zeng, Q.; Xiao, F.; Liu, Z.Z.; Lei, J.T. A weighted mean temperature model using principal component analysis for Greenland. GPS Solut. 2023, 27, 57. [Google Scholar] [CrossRef]
- Böhm, J.; Heinkelmann, R.; Schuh, H. Short Note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Landskron, D.; Boehm, J. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Zeng, Z.; Huang, L.; Liu, L.; Huang, L.; Zhou, L.; Ren, C.; He, H. Investigation of Antarctic Precipitable Water Vapor Variability and Trend from 18 Year (2001 to 2018) Data of Four Reanalyses Based on Radiosonde and GNSS Observations. Remote Sens 2021, 13, 3901. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, C.; Chen, B.; Dai, W.J.R.S. Consistency Evaluation of Precipitable Water Vapor Derived From ERA5, ERA-Interim, GNSS, and Radiosondes Over China. Radio Sci. 2019, 54, 561–571. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, K.; Yang, L.; Wu, S.; Li, L.J.R.S. Evaluation and Calibration of MODIS Near-Infrared Precipitable Water Vapor over China Using GNSS Observations and ERA-5 Reanalysis Dataset. Remote Sens. 2021, 13, 2761. [Google Scholar] [CrossRef]
- Huang, L.; Mo, Z.; Liu, L.; Zeng, Z.; Chen, J.; Xiong, S.; He, H. Evaluation of hourly PWV products derived from ERA5 and MERRA-2 over the Tibetan Plateau using ground-based GNSS observations by two enhanced models. Earth Space Sci. 2021, 8, e2020ea001516. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Dai, A. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res.-Atmos. 2005, 110, D21101. [Google Scholar] [CrossRef]
- Vomel, H.; Selkirk, H.; Miloshevich, L.; Valverde-Canossa, J.; Valdes, J.; Kyroe, E.; Kivi, R.; Stolz, W.; Peng, G.; Diaz, J.A. Radiation dry bias of the vaisala RS92 humidity sensor. J. Atmos. Ocean. Technol. 2007, 24, 953–963. [Google Scholar] [CrossRef]
- Tsidu, G.M.; Blumenstock, T.; Hase, F. Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis. Atmos. Meas. Technol. 2015, 8, 3277–3295. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Yang, P.F.; Yao, W.Q.; Yao, Y.B. Hourly PWV Dataset Derived from GNSS Observations in China. Sensors 2020, 20, 231. [Google Scholar] [CrossRef]
- Huang, L.; Mo, Z.; Xie, S.; Liu, L.; Chen, J.; Kang, C.; Wang, S. Spatiotemporal characteristics of GNSS-derived precipitable water vapor during heavy rainfall events in Guilin, China. Satell. Navig. 2021, 2, 13. [Google Scholar] [CrossRef]
- Kannemadugu, H.B.S.; Ranganathan, K.; Gharai, B.; Seshasai, M.V.R. GNSS-GPS derived integrated water vapor and performance assessment of ERA-5 data over India. J. Atmos. Sol.-Terr. Phys. 2021, 227, 105807. [Google Scholar] [CrossRef]
- Hobbs, J. Characterizing Diurnal and Interannual Variability in the Atmosphere through Physical and Stochastic Models. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2014. [Google Scholar] [CrossRef]
- Li, G.; Kimura, F.; Sato, T.; Huang, D. A composite analysis of diurnal cycle of GPS precipitable water vapor in central Japan during Calm Summer Days. Theor. Appl. Climatol. 2008, 92, 15–29. [Google Scholar] [CrossRef]
- Eric, E.; Wandjie, B.B.S.; Lenouo, A.; Monkam, D.; Manatsa, D. African summer monsoon active and break spells cloud properties: Insight from CloudSat-CALIPSO. Atmos. Res. 2020, 237, 104842. [Google Scholar] [CrossRef]
- Rajeevan, M.; Gadgil, S.; Bhate, J. Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci. 2010, 119, 229–247. [Google Scholar] [CrossRef]
- Tuller, S.E. Seasonal and annual precipitation efficiency in Canada. Atmosphere 1973, 11, 52–66. [Google Scholar] [CrossRef]
- Bauer, M.; Del Genio, A.D.; Lanzante, J.R. Observed and simulated temperature-humidity relationships: Sensitivity to sampling and analysis. J. Clim. 2002, 15, 203–215. [Google Scholar] [CrossRef]
- Lien, T.Y.; Yeh, T.K.; Hong, J.S.; Hsiao, T.Y. Variations in GPS precipitable water vapor and rainfall during the 2006-2019 Mei-yu season in Taiwan. Adv. Space Res. 2022, 70, 1375–1387. [Google Scholar] [CrossRef]
- Sapucci, L.F.; Machado, L.A.T.; de Souza, E.M.; Campos, T.B. Global Positioning System precipitable water vapour (GPS-PWV) jumps before intense rain events: A potential application to nowcasting. Meteorol. Appl. 2019, 26, 49–63. [Google Scholar] [CrossRef]
- Berg, P.; Haerter, J.O.; Thejll, P.; Piani, C.; Hagemann, S.; Christensen, J.H. Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res.-Atmos. 2009, 114, D18102. [Google Scholar] [CrossRef]
- Yassien, A.E.; Mousa, A.E.-K.; Rabah, M.; Saber, A.; Zhran, M. Analysis of spatial and temporal variation of precipitable water vapor using COSMIC radio occultation observations over Egypt. Egypt. J. Remote Sens. Space Sci. 2022, 25, 751–764. [Google Scholar] [CrossRef]
- Ghaffari-Razin, S.R.; Majd, R.D.; Hooshangi, N. Regional modeling and forecasting of precipitable water vapor using least square support vector regression. Adv. Space Res. 2023, 71, 4725–4738. [Google Scholar] [CrossRef]
Months | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias (mm) | −0.74 | −0.08 | 0.78 | −0.12 | 0.69 | 0.36 | 1.41 | 2.24 | 1.03 | −0.52 | 0.16 | −0.32 |
RMSE (mm) | 0.22 | 0.06 | 0.55 | 0.08 | 0.49 | 0.26 | 1.00 | 1.58 | 0.73 | 0.37 | 0.12 | 0.23 |
Regions | Bias (mm) | RMSE (mm) | ||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
GX | −5.62 | 6.62 | 0.80 | 1.18 | 6.63 | 2.87 |
GXN | −5.64 | 7.72 | 0.79 | 1.15 | 7.72 | 2.76 |
GXM | −5.94 | 7.37 | 0.63 | 1.20 | 8.04 | 2.83 |
GXS | −5.76 | 7.75 | 0.93 | 1.06 | 7.75 | 2.75 |
GXC | −6.51 | 8.12 | 0.18 | 1.14 | 8.23 | 2.37 |
Regions | Annual | PreM | MonS | PostM | Winter | |||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | |
GX | −0.36 | 0.56 | −0.48 | 0.63 | −0.69 | 0.64 | −0.53 | 0.63 | −0.29 | 0.39 |
LT | 07:00 | 16:00 | 15:00 | 08:00 | 23:00 | 09:00 | 23:00 | 08:00 | 03:00 | 08:00 |
GXN | −0.47 | 0.42 | −0.69 | 0.46 | −0.80 | 0.74 | −0.43 | 0.49 | −0.45 | 0.22 |
LT | 08:00 | 17:00 | 02:00 | 09:00 | 23:00 | 11:00 | 23:00 | 08:00 | 02:00 | 18:00 |
GXM | −0.40 | 0.66 | −0.65 | 0.76 | −0.78 | 0.73 | −0.55 | 0.70 | −0.31 | 0.48 |
LT | 07:00 | 16:00 | 16:00 | 08:00 | 23:00 | 07:00 | 23:00 | 10:00 | 02:00 | 08:00 |
GXS | −0.40 | 0.63 | −0.75 | 0.84 | −0.51 | 0.57 | −0.61 | 0.66 | −0.37 | 0.56 |
LT | 23:00 | 15:00 | 15:00 | 07:00 | 23:00 | 06:00 | 23:00 | 08:00 | 15:00 | 07:00 |
GXC | −0.58 | 0.41 | −1.13 | 0.81 | −0.96 | 0.94 | −0.88 | 0.78 | −0.57 | 0.84 |
LT | 23:00 | 13:00 | 13:00 | 22:00 | 12:00 | 00:00 | 22:00 | 09:00 | 16:00 | 08:00 |
Year | NO. | Duration of Active Spell | Days | DT (°C) | NO. | Duration of Break Spell | Days | DT (°C) |
---|---|---|---|---|---|---|---|---|
2017 | 1 | 5 June–9 June | 5 | 13 | 1 | 18 July–20 July | 3 | 5 |
2 | 12 June–16 June | 5 | 12 | 2 | 28 July–30 July | 3 | 7 | |
3 | 27 June–4 July | 8 | 10 | 3 | 18 August–21 August | 4 | 8 | |
4 | 7 July–11 July | 5 | 8 | 4 | 27 August–29 August | 3 | 6 | |
5 | 1st August–5 August | 5 | 7 | 5 | 11 September–17 September | 7 | 8 | |
6 | 13 August–15 August | 3 | 9 | |||||
7 | 5 September–7 September | 3 | 8 | |||||
2018 | 1 | 1st June–4 June | 4 | 18 | 1 | 14 June–19 June | 6 | 10 |
2 | 10 June–12 June | 3 | 11 | 2 | 8 September–12 September | 5 | 8 | |
3 | 20 June–26 June | 7 | 8 | 3 | 28 September–30 September | 3 | 11 | |
4 | 6 July–8 July | 3 | 7 | |||||
5 | 28 July–4 August | 8 | 7 | |||||
6 | 28 August–2 September | 6 | 12 | |||||
7 | 16 September–18 September | 3 | 10 | |||||
2020 | 1 | 23 June–27 June | 5 | 22 | 1 | 12 July–15 July | 4 | 16 |
2 | 30 June–2 July | 3 | 16 | 2 | 23 July–25 July | 3 | 20 | |
3 | 8 July–10 July | 3 | 16 | 3 | 6 August–8 August | 3 | 19 | |
4 | 17 August–22 August | 6 | 17 | |||||
5 | 26 August–11 September | 7 | 18 | |||||
6 | 16 September–18 September | 3 | 18 | |||||
7 | 25 September–27 September | 3 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, L.; Xiong, S.; Huang, L.; Xie, S.; Liu, L. Investigating the ERA5-Based PWV Products and Identifying the Monsoon Active and Break Spells with Dense GNSS Sites in Guangxi, China. Remote Sens. 2023, 15, 4710. https://doi.org/10.3390/rs15194710
Liu W, Zhang L, Xiong S, Huang L, Xie S, Liu L. Investigating the ERA5-Based PWV Products and Identifying the Monsoon Active and Break Spells with Dense GNSS Sites in Guangxi, China. Remote Sensing. 2023; 15(19):4710. https://doi.org/10.3390/rs15194710
Chicago/Turabian StyleLiu, Wen, Lulu Zhang, Si Xiong, Liangke Huang, Shaofeng Xie, and Lilong Liu. 2023. "Investigating the ERA5-Based PWV Products and Identifying the Monsoon Active and Break Spells with Dense GNSS Sites in Guangxi, China" Remote Sensing 15, no. 19: 4710. https://doi.org/10.3390/rs15194710
APA StyleLiu, W., Zhang, L., Xiong, S., Huang, L., Xie, S., & Liu, L. (2023). Investigating the ERA5-Based PWV Products and Identifying the Monsoon Active and Break Spells with Dense GNSS Sites in Guangxi, China. Remote Sensing, 15(19), 4710. https://doi.org/10.3390/rs15194710