New Space Object Cataloguing through Very-Short-Arc Data Mining
Abstract
:1. Introduction
2. Method
2.1. New Object Cataloguing Process
2.2. Data Mining in Space Object Catalogue
3. Experimental Results
3.1. Influences of VSAs on IOD, Track Association, and Tracklet-to-Object Matching
3.1.1. Initial Orbit Determination
3.1.2. Track Association
3.1.3. Tracklet-to-Object Matching
3.2. New Space Object Catalogue and Data Mining
3.2.1. Data Preparation
3.2.2. New Object Cataloguing
3.2.3. Data Mining
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GEO | Geosynchronous Earth Orbit |
IOD | Initial Orbit Determination |
LEO | Low Earth Orbit |
MEO | Medium Earth Orbit |
NORAD | North American Aerospace Defense Command |
OD | Orbit Determination |
OP | Orbit Prediction |
RSO | Resident Space Object |
RMS | Root Mean Square |
SMA | Semi-major Axis |
SDP4 | Simplified Deep-Space Perturbation 4 |
SGP4 | Simplified General Perturbation 4 |
TP | True Positive |
TLE | Two-line Element |
VSA | Very Short Arc |
References
- Sun, C.; Sun, Y.; Yu, X.; Fang, Q. Rapid Detection and Orbital Parameters’ Determination for Fast-Approaching Non-Cooperative Target to the Space Station Based on Fly-around Nano-Satellite. Remote Sens. 2023, 15, 1213. [Google Scholar] [CrossRef]
- Herzog, J. Cataloguing of Objects on High and Intermediate Altitude Orbits. Ph.D. Thesis, Universität Bern, Basel, Switzerland, 2013. [Google Scholar]
- Liu, W. Based on the Application and Analysis of the Space Coding Database. Ph.D. Thesis, Xiangtan University, Xiangtan, China, 2013. [Google Scholar]
- Boikov, V.F.; Makhonin, G.; Testov, A.; Khutorovsky, Z.N.; Shogin, A. Prediction procedures used in satellite catalog maintenance. J. Guid. Control. Dyn. 2009, 32, 1179–1199. [Google Scholar] [CrossRef]
- Li, B.; Sang, J.; Liu, H. Accurate propagation of debris orbit error via dynamic calibration and its cataloguing. Adv. Space Res. 2019, 63, 2422–2435. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Ibrahim, M.; Liang, Z.; Dong, X.; Tealib, S. Orbit Predictions for Space Object Tracked by Ground-Based Optical and SLR Stations. Remote Sens. 2022, 14, 4493. [Google Scholar] [CrossRef]
- Setty, S.J.; Cefola, P.J.; Montenbruck, O.; Fiedler, H. Application of semi-analytical satellite theory orbit propagator to orbit determination for space object catalog maintenance. Adv. Space Res. 2016, 57, 2218–2233. [Google Scholar] [CrossRef]
- Utzmann, J.; Wagner, A.; Silha, J.; Schildknecht, T.; Willemsen, P.; Teston, F.; Flohrer, T. A system design for space-based space surveillance. In Proceedings of the Small Satellites Systems & Services Symposium, Porto Petro, Majorca, Spain, 26–30 May 2014; pp. 26–30. [Google Scholar]
- Jianli, D. Researches on Space-Based Surveillance System for Cataloging Space Debris. Ph.D. Thesis, Wuhan University, Wuhan, China, 2018. [Google Scholar]
- Du, J.; Lei, X.; Sang, J. A space surveillance satellite for cataloging high-altitude small debris. Acta Astronaut. 2019, 157, 268–275. [Google Scholar] [CrossRef]
- Peng, H.; Bai, X. Machine learning approach to improve satellite orbit prediction accuracy using publicly available data. J. Astronaut. Sci. 2020, 67, 762–793. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Liu, H.; Sang, J. An analysis of close approaches and probability of collisions between LEO resident space objects and mega constellations. Geo-Spat. Inf. Sci. 2022, 25, 104–120. [Google Scholar] [CrossRef]
- Hussain, K.F.; Thangavel, K.; Gardi, A.; Sabatini, R. Passive Electro-Optical Tracking of Resident Space Objects for Distributed Satellite Systems Autonomous Navigation. Remote Sens. 2023, 15, 1714. [Google Scholar] [CrossRef]
- Lei, X.; Wang, K.; Zhang, P.; Pan, T.; Li, H.; Sang, J.; He, D. A geometrical approach to association of space-based very short-arc LEO tracks. Adv. Space Res. 2018, 62, 542–553. [Google Scholar] [CrossRef]
- Pastor, A.; Escobar, D.; Sanjurjo, M.; Águeda, A. Data processing methods for catalogue build-up and maintenance. In Proceedings of the 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22–24 January 2019; Volume 1. [Google Scholar]
- Reihs, B.; Vananti, A.; Schildknecht, T. A method for perturbed initial orbit determination and correlation of radar measurements. Adv. Space Res. 2020, 66, 426–443. [Google Scholar] [CrossRef]
- Liu, L.; Li, B.; Chen, J.Y.; Lei, X.X.; Zhao, G.Y.; Sang, J.Z. Applying Lambert problem to association of radar-measured orbit tracks of space objects. Res. Astron. Astrophys. 2021, 21, 301. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, L.; Li, B.; Li, Z.; Sang, J. An orbit determination approach to associating optical tracklets of space objects. Acta Astronaut. 2022, 200, 506–523. [Google Scholar] [CrossRef]
- Hill, K.; Sabol, C.; Alfriend, K.T. Comparison of covariance based track association approaches using simulated radar data. J. Astronaut. Sci. 2012, 59, 281–300. [Google Scholar] [CrossRef]
- Pirovano, L.; Principe, G.; Armellin, R. Data association and uncertainty pruning for tracks determined on short arcs. Celest. Mech. Dyn. Astron. 2020, 132, 1–23. [Google Scholar] [CrossRef]
- Milani, A.; Tommei, G.; Farnocchia, D.; Rossi, A.; Schildknecht, T.; Jehn, R. Correlation and orbit determination of space objects based on sparse optical data. Mon. Not. R. Astron. Soc. 2011, 417, 2094–2103. [Google Scholar] [CrossRef]
- McMahon, J.W.; Scheeres, D.J. Improving space object catalog maintenance through advances in solar radiation pressure modeling. J. Guid. Control. Dyn. 2015, 38, 1366–1381. [Google Scholar] [CrossRef]
- Hobson, T.; Clarkson, I.; Bessell, T.; Rutten, M.; Gordon, N.; Moretti, N.; Morreale, B. Catalogue creation for space situational awareness with optical sensors. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 20–23 September 2016; p. 27. [Google Scholar]
- Setty, S. Orbit Uncertainty Propagation for Space Object Catalogue Maintenance. Ph.D. Thesis, Universität der Bundeswehr München, Neubiberg, Germany, 2020. [Google Scholar]
- Vallado, D.A. Fundamentals of Astrodynamics and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 12. [Google Scholar]
- Cataldo, D.; Gentile, L.; Ghio, S.; Giusti, E.; Tomei, S.; Martorella, M. Multibistatic Radar for Space Surveillance and Tracking. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 14–30. [Google Scholar] [CrossRef]
- Yunpeng, H.; Kebo, L.; Yan’gang, L.; Lei, C. Review on strategies of space-based optical space situational awareness. J. Syst. Eng. Electron. 2021, 32, 1152–1166. [Google Scholar] [CrossRef]
- Muntoni, G.; Montisci, G.; Pisanu, T.; Andronico, P.; Valente, G. Crowded space: A review on radar measurements for space debris monitoring and tracking. Appl. Sci. 2021, 11, 1364. [Google Scholar] [CrossRef]
- Escobal, P. Methods of Orbit Determination; Krieger Publishing Company: Malabar, FL, USA, 1970. [Google Scholar]
- Maruskin, J.M.; Scheeres, D.J.; Alfriend, K.T. Correlation of optical observations of objects in earth orbit. J. Guid. Control. Dyn. 2009, 32, 194–209. [Google Scholar] [CrossRef]
- Li, B.; Liu, L.; Sang, J.Z. Tracklet-to-object Matching for Climbing Starlink Satellites through Recursive Orbit Determination and Prediction. Res. Astron. Astrophys. 2022, 22, 115010. [Google Scholar] [CrossRef]
- Gooding, R.H. A procedure for the solution of Lambert’s orbital boundary-value problem. Celest. Mech. Dyn. Astron. 1990, 48, 145–165. [Google Scholar] [CrossRef]
- Tao, X.; Li, Z.; Xu, C.; Huo, Y.; Zhang, Y. Track-to-object association algorithm based on TLE filtering. Adv. Space Res. 2021, 67, 2304–2318. [Google Scholar] [CrossRef]
Catalogued Objects | Cataloguing Rate | Catalogued Tracklets | Tracklet Utilization |
---|---|---|---|
103 | 99.04% | 2248 | 89.38% |
Time [day] | Utilization after Cataloguing [%] | Utilization after Mining [%] | Utilization Improved [%] |
---|---|---|---|
1 | 88.91 | 98.99 | 10.08 |
2 | 88.67 | 98.61 | 9.94 |
3 | 90.57 | 99.02 | 8.45 |
4 | 90.36 | 99.00 | 8.63 |
5 | 88.41 | 98.82 | 10.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Li, B.; Sang, J.; Xia, S.; Lei, X. New Space Object Cataloguing through Very-Short-Arc Data Mining. Remote Sens. 2023, 15, 4848. https://doi.org/10.3390/rs15194848
Liu L, Li B, Sang J, Xia S, Lei X. New Space Object Cataloguing through Very-Short-Arc Data Mining. Remote Sensing. 2023; 15(19):4848. https://doi.org/10.3390/rs15194848
Chicago/Turabian StyleLiu, Lei, Bin Li, Jizhang Sang, Shengfu Xia, and Xiangxu Lei. 2023. "New Space Object Cataloguing through Very-Short-Arc Data Mining" Remote Sensing 15, no. 19: 4848. https://doi.org/10.3390/rs15194848
APA StyleLiu, L., Li, B., Sang, J., Xia, S., & Lei, X. (2023). New Space Object Cataloguing through Very-Short-Arc Data Mining. Remote Sensing, 15(19), 4848. https://doi.org/10.3390/rs15194848