Air Temperature Variations in Multiple Layers of the Indonesia Earthquake Based on the Tidal Forces
Abstract
:1. Introduction
2. Material and Methods
2.1. Earthquake and NCEP Data
2.2. The Tidal Force and Air Temperature Calculation
3. Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiang, Z.J.; Kong, L.C. Laboratory research on mechanism of satellite infrared anomaly. China Sci. Bull. 1995, 40, 1403–1404. [Google Scholar]
- Jing, F.; Shen, X.H.; Kang, C.L.; Xiong, P. Variations of multi-parameter observations in atmosphere related to earthquake. Nat. Hazards Earth Syst. Sci. 2013, 13, 27–33. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Ouzounov, D.; Bryant, N.; Logam, T.; Pulinets, S.; Taylor, P. Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003. Phys. Chem. Earth. 2006, 31, 154–163. [Google Scholar] [CrossRef]
- Ouzounov, D.; Liu, D.; Kang, C.L.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Saraf, A.K.; Choudhury, S. Thermal remote sensing technique in the study of pre-earthquake thermal anomalies. J. Ind. Geophys. Union. 2005, 9, 197–207. [Google Scholar]
- Tronin, A.; Hayakawa, M.; Molchanov, O.A. Thermal IR satellite data application for earthquake research in Japan and China. J. Geodyn. 2002, 33, 519–534. [Google Scholar] [CrossRef]
- Wu, L.X.; Qin, K.; Liu, S. GEOSS-based thermal parameters analysis for earthquake anomaly recognition. Proc. IEEE 2012, 100, 2891–2907. [Google Scholar] [CrossRef]
- Qin, K.; Wu, L.X.; Santis, A.D.; Meng, J.; Ma, W.Y.; Cianchini, G. Quasi-synchronous multi-parameter anomalies associated with the 2010–2011 New Zealand earthquake sequence. Nat. Hazards Earth Syst. Sci. 2012, 12, 1059–1072. [Google Scholar] [CrossRef]
- Liu, D.F.; Luo, Z.L.; Peng, K.Y. OLR anomalies before strong earthquakes. Earthquake 1997, 17, 126–132. [Google Scholar]
- Kang, C.L.; Zhang, Y.M.; Liu, D.F.; Jing, F. Long wave radiation signs of the Wenchuan 8.0 magnitude earthquake. Earthquake 2009, 29, 116–120. [Google Scholar]
- Xin, B. Study on the jumping phenomenon of geotemperature before earthquake. Recent Dev. World Seismol. 2008, 360, 11–18. [Google Scholar]
- Wang, L.Y.; Zhu, C.Z. Abnormal changes in ground temperature before the Tangshan and Haicheng earthquakes. Earthq. Res. 1984, 7, 649–656. [Google Scholar]
- Zhang, Z.Y. The Relationship between Shallow Ground Temperature and Strong Earthquakes. Earthquake 1994, 2, 73–80. [Google Scholar]
- Yan, W.B.; Xu, X.L. Analysis on the Characteristics of Surface Temperature Changes before and after the ”5.12” Wenchuan Earthquake. Meteorol. Res. Plateau Mt. Areas 2008, 28, 42–46. [Google Scholar]
- Chen, S.Y.; Liu, P.X.; Liu, L.Q. The phenomenon of ground temperature changes in Kangding before the Lushan earthquake. Seismogeology 2013, 35, 634–640. [Google Scholar]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas, The case of Kocaeli (İzmit) earthquake, August 17, 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Tramutoli, V.; Aliano, C.; Corrado, R.; Filizzola, C.; Genzano, N.; Lisi, M.; Martinelli, G.; Pergola, N. On the possible origin of thermal infrared radiation (TIR) anomalies in earthquake-prone areas observed using robust satellite techniques (RST). Chem. Geol. 2013, 339, 157–168. [Google Scholar] [CrossRef]
- Tramutoli, V.; Corrado, R.; Filizzola, C.; Genzano, N.; Sileo, G. A decade of RST applications to seismically active areas monitoring by TIR satellite observations. In Proceedings of the 2013 EUMETSAT Meteorological Satellite Conference & 19th American Meteorological Society (AMS) Satellite Meteorology, Oceanography, and Climatology Conference, Vienna, Austria, 16–20 September 2013; Volume 8. [Google Scholar]
- Bellaoui, M.; Hassini, A.; Kada, B. Pre-seismic Anomalies in Remotely Sensed Land Surface Temperature measurements: The Case Study of 2003 Boumerdes Earthquake. Adv. Space Res. 2017, 59, 2645–2657. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Dunajecka, M.A. Specific variations of air temperature and relative humidity around the time of Michoacan earthquake M8.1 Sept. 19, 1985 as a possible indicator of interaction between tectonic plates. Tectonophysics 2007, 431, 221–230. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP/NCAR 50-year reanalysis: Documentation and monthly-means CD-ROM. Bull. Am. Meteorol. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Ma, W.Y.; Zhang, X.D.; Liu, J.; Yao, Q.; Zhou, B.; Yue, C.; Kang, C.; Lu, X. Influences of multiple layers of air temperature differences on tidal forces and tectonic stress before, during and after the Jiujiang earthquake. Remote Sens. Environ. 2018, 210, 159–165. [Google Scholar]
- Zhang, Y.; Meng, Q.Y.; Wang, Z.A.; Lu, X. Temperature Variations in Multiple Air Layers before the Mw 6.2 2014 Ludian Earthquake, Yunnan, China. Remote Sens. 2021, 13, 884. [Google Scholar] [CrossRef]
- Mahmood, I. Anomalous variations of air temperature prior to earthquakes. Geocarto Int. 2019, 36, 1396–1408. [Google Scholar] [CrossRef]
- Mahmood, I.; Iqbal, M.F.; Shahzad, M.I.; Waqas, A. Investigation of earthquake thermal precursors in active tectonic regions of the world. J. Geodyn. 2020, 141–142, 101785. [Google Scholar] [CrossRef]
- Draz, M.U.; Shah, M.; Jamjareegulgarn, P.; Shahzad, R.; Hasan, A.M.; Ghamry, N.A. Deep Machine Learning Based Possible Atmospheric and Ionospheric Precursors of the 2021 Mw 7.1 Japan Earthquake. Remote Sens. 2023, 15, 1904. [Google Scholar] [CrossRef]
- Shah, M.; Shahzad, R.; Jamjareegulgarn, P.; Ghaffar, B.; Oliveira-Junior, J.F.d.; Hassan, A.M.; Ghamry, N.A. Machine-Learning-Based Lithosphere-Atmosphere-Ionosphere Coupling Associated with MW>6 Earthquakes in America. Atmosphere 2023, 14, 1236. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Pulinets, S. Low-latitude atmosphere-ionosphere effects initiated by strong earthquakes preparation process. Int. J. Geophys. 2012, 131842, 1–14. [Google Scholar] [CrossRef]
- Mahmood, I.; Iqbal, M.F.; Shahzad, M.I.; Qaiser, S. Investigation of atmospheric anomalies associated with Kashmir and Awaran Earthquakes. J. Atmos. Solar Terr. Phys. 2017, 154, 75–85. [Google Scholar] [CrossRef]
- Ghosh, S.; Chowdhury, S.; Kundu, S.; Sasmal, S.; Politis, D.Z.; Potirakis, S.M.; Hayakawa, M.; Chakraborty, S.; Chakrabarti, S.K. Unusual Surface Latent Heat Flux Variations and Their Critical Dynamics Revealed before Strong Earthquakes. Entropy 2022, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Sasmal, S.; Basak, T.; Ghosh, S.; Palit, S.; Chakrabarti, S.K.; Ray, S. Numerical modeling of possible lower ionospheric anomalies associated with Nepal earthquake in May 2015. Adv. Space Res. 2017, 60, 1787–1796. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sasmal, S.; Chakrabarti, S.K.; Bhattacharya, A. Observational signatures of unusual outgoing longwave radiation (OLR) and atmospheric gravity waves (AGW) as precursory effects of May 2015 Nepal earthquakes. J. Geodyn. 2018, 113, 43–51. [Google Scholar] [CrossRef]
- Ghosh, S.; Chakraborty, S.; Sasmal, S.; Basak, T.; Chakrabarti, S.K.; Samanta, A. Comparative study of the possible lower ionospheric anomalies in Very Low Frequency (VLF) signal during Honshu, 2011 and Nepal, 2015 earthquakes. Geomat. Nat. Hazards Risk 2019, 10, 1596–1612. [Google Scholar] [CrossRef]
- Dey, S.; Singh, R. Surface latent heat flux as an earthquake precursor. Nat. Hazards Earth Syst. Sci. 2003, 3, 749–755. [Google Scholar] [CrossRef]
- Cervone, G.; Kafatos, M.; Napoletani, D.; Singh, R.P. Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes. Nat. Hazards Earth Syst. Sci. 2004, 4, 359–374. [Google Scholar] [CrossRef]
- Harrison, R.G.; Aplin, K.L.; Rycroft, M.J. Atmospheric Electricity Coupling between Earthquake Regions and the Ionosphere. J. Atmos. Sol. Terr. Phy. 2010, 72, 376–381. [Google Scholar] [CrossRef]
- Song, R.; Hattori, K.; Zhang, X.M.; Sanaka, S. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite. J. Atmos. Sol. Terr. Phys. 2020, 205, 105291. [Google Scholar] [CrossRef]
- Pulinets, S.A. Strong earthquake prediction possibility with the help of topside sounding from satellites. Adv. Space Res. 1998, 21, 455–458. [Google Scholar] [CrossRef]
- Singh, O.P.; Chauhan, V.; Singh, V.; Singh, B. Anomalous variation in total electron content (TEC) associated with earthquakes in India during September 2006-November 2007. Phys. Chem. Earth 2009, 34, 479–484. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Chen, C.S. A statistical investigation of pre earthquake ionospheric anomaly. J. Geophys. Res. Space Phys. 2006, 111, A05304. [Google Scholar]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Hattori, K. Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M9. 3 Sumatra-Andaman Earthquake. J. Geophys. Res. Space Phys. 2010, 115, A09312. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.P.; Zhang, X.M. Ionospheric perturbations in plasma parameters before global strong earthquakes. Adv. Space Res. 2014, 53, 776–787. [Google Scholar] [CrossRef]
- Munawar, S.; Jin, S. Statistical characteristics of seismo-ionospheric GPS TEC disturbances prior to global Mw≥5.0 earthquakes (1998–2014). J. Geodyn. 2015, 92, 42–49. [Google Scholar]
- Zhang, X.; Shen, X.; Liu, J.; Ouyang, X.; Qian, J.; Zhao, S. Analysis of ionospheric plasma perturbations before Wenchuan earthquake. Nat. Hazards Earth Syst. Sci. 2009, 9, 1259–1266. [Google Scholar] [CrossRef]
- Jung, T.K.; Liu, J.Y.; Tsai, H.F.; Huang, B.S.; Lin, C.H.; Yu, S.B.; Yeh, Y.S. Ionospheric disturbances triggered by the Mw7.6 earthquake off the coast of El Salvador on 13 January 2001. Terr. Atmos. Ocean Sci. 2006, 17, 345–351. [Google Scholar] [CrossRef]
- Liu, J.Y.; Sun, Y.Y.; Tsai, H.F.; Lin, C.H. Seismo-traveling ionospheric disturbances triggered by the 12 May 2008 M 8.0 Wenchuan Earthquake. Terr. Atmos. Ocean Sci. 2012, 23, 9–15. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, C.H.; Sun, Y.Y.; Chen, C.H.; Tsai, H.F.; Yen, H.Y.; Chum, J.; Lastovicka, Q.S.; Yang, W.S.; Chen, S.W. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku Earthquake over Taiwan. Geophys. Res. Lett. 2016, 43, 1759–1765. [Google Scholar] [CrossRef]
- Liu, J.Y.; Lin, C.Y.; Chen, Y.I.; Wu, T.R.; Meng, J.C.; Liu, T.C.; Tsai, Y.-L.; Chang, L.C.; Chao, C.-K.; Ouzounov, D.; et al. The source detection of 28 September 2018 Sulawesi tsunami by using ionospheric GNSS total electron content disturbance. Geosci. Lett. 2020, 7, 11. [Google Scholar] [CrossRef]
- Tsai, H.F.; Liu, J.Y.; Lin, C.H.; Chen, C.H. Tracking the epicenter and the tsunami source with GPS ionosphere observation. Earth Planet Space 2011, 63, 859–862. [Google Scholar] [CrossRef]
- Cahyadi, M.N.; Muslim, B.; Pratomo, D.G.; Anjasmara, I.M.; Arisa, D.; Rahayu, R.W.; Hariyanto, Y.S.; Jin, S.; Muafiry, N. Co-Seismic Ionospheric Disturbances Following the 2016West Sumatra and 2018 Palu Earthquakes from GPS and GLONASS Measurements. Remote Sens. 2022, 14, 401. [Google Scholar] [CrossRef]
- Kilston, S.; Knopoff, L. Lunaresolar periodicities of large earthquakes in southern California. Nature 1983, 304, 21–25. [Google Scholar] [CrossRef]
- Wang, W.; Shearer, P.M.; Vidale, J.E.; Xu, X.; Trugman, D.T.; Fialko, Y. Tidal modulation of seismicity at the Coso geothermal field. Earth Planet. Sci. Lett. 2022, 579, 117335. [Google Scholar] [CrossRef]
- Huda, I.N.; Lambert, S.; Souchay, J. Tidal triggering of seismicity in the region of Palu, Central Sulawesi, Indonesia. Geod. Geodyn. 2023, 14, 377–384. [Google Scholar] [CrossRef]
- Lammlein, D.R.; Latham, G.V.; Dorman, J.; Nakamura, Y.; Ewing, M. Lunar seismicity, structure and tectonics. Rev. Geophy. 1974, 12, 1–21. [Google Scholar] [CrossRef]
- Heaton, T.H. Tidal Triggering of Earthquakes. Geophys. J. R. Astron. Soc. 1975, 43, 307–326. [Google Scholar] [CrossRef]
- Tanaka, S.; Ohtake, M.; Sato, H. Spatio-temporal variation of the tidal triggering effect on earthquake occurrence associated with the 1982 South Tonga earthquake of Mw 7.5. Geophys. Res. Lett. 2002, 29, 1756. [Google Scholar] [CrossRef]
- Allen, M.W. The lunar triggering of earthquakes in Southern California. Bull. Seism. Soc. Am. 1936, 26, 147–157. [Google Scholar] [CrossRef]
- Tamrazyan, G.P. Principal regularities in the distribution of major earthquakes relative to solar and lunar tides and other cosmic sources. Icerus 1968, 9, 574–592. [Google Scholar] [CrossRef]
- Ma, W.Y.; Zhang, X.C.; Dai, X.F.; Xie, F. A preliminary study on the use of NCEP temperature images and additive tectonic stress from Astro-Tidal-Triggering to forecast short-impending earthquakes. Earthq. Res. China 2007, 21, 85–93. [Google Scholar]
- Li, Q.; Tan, K.; Zhao, B. The 2018 Palu Mw7.5 earthquake in Indonesia-a super shear rupture event. Chin. J. Geophys. 2019, 62, 3017–3023. [Google Scholar]
- Qian, W.C.; Ye, K.Y. Elastic Mechanics; Science Press: Beijing, China, 1980; pp. 63–350. [Google Scholar]
- Su, B.; Li, H.; Ma, W.Y.; Zhao, J.; Yao, Q.; Cui, J.; Chong, Y.; Chunli, K. The Outgoing Longwave Radiation Analysis of Medium and Strong Earthquakes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Rensing 2021, 14, 6962–6973. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, C.; Ma, W.; Ren, J.; Wang, Y. Study on thermal anomalies of earthquake process by using tidal-force and outgoing-longwave-radiation. Therm. Sci. 2017, 22, 767–776. [Google Scholar]
- Zhou, B.; Liu, X.J.; Ma, W.Y. The analysis of celestial tectonicsgenerating force’s inducing effect to the M7.3 Japan earthquake on 9th, March 2011. Procedia Environ. Sci. 2011, 10, 2005–2009. [Google Scholar]
- Ma, W.Y.; Wang, H.; Li, F.S.; Ma, W.M. Relation between the celestial tide-generating stress and the temperature variations of the Abruzzo M6.3 earthquake in April 2009. Nat. Hazards Earth Syst. Sci. 2012, 12, 819–827. [Google Scholar] [CrossRef]
- Blackett, M.; Wooster, M.J.; Malamud, B.D. Exploring land surface temperature earthquake precursors: A focus on the Gujarat (India) earthquake of 2001. Geophys. Res. Lett. 2011, 38, L15303. [Google Scholar] [CrossRef]
- Shen, Z.K.; Sun, J.B.; Zhang, P.Z.; Wan, Y.G.; Wang, M.; Burgmann, R.; Zeng, Y.; Gan, W.; Liao, H.; Wang, Q. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat. Geosci. 2009, 2, 718–724. [Google Scholar] [CrossRef]
- Yin, X.C.; Zhang, L.P.; Zhang, H.H.; Yin, C.; Wang, Y.C.; Zhang, Y.X.; Peng, K.; Wang, H.; Song, Z.; Yu, H.; et al. LURR’s Twenty Years and its Perspective. Pure Appl. Geophys. 2006, 163, 2317–2341. [Google Scholar] [CrossRef]
- Wu, L.X.; Cui, C.Y.; Geng, N.G.; Wang, J.Z. Remote sensing rock mechanics (RSRM) and associated experimental studies. Int. J. Rock Mech. Min. Sci. 2000, 37, 879–888. [Google Scholar] [CrossRef]
- Ben, Y.; Sammis, C.G. Characterization of fault zones. Pure Appl. Geophys. 2003, 160, 677–715. [Google Scholar]
- Lisi, M.; Filizzola, C.; Genzano, N.; Grimaldi, C.S.L.; Lacava, T.; Marchese, F.; Mazzeo, G.; Pergola, N.; Tramutoli, V. A study on the Abruzzo 6 April 2009 earthquake by applying the RST approach to 15 years of AVHRR TIR observations. Nat. Hazards Earth Syst. Sci. 2010, 10, 395–406. [Google Scholar] [CrossRef]
- Robert, H. Geology of Indonesia; Alphascript Publishing: Brigham, UT, USA, 2010; ISBN 13: 978-613-2-55756-8. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.D.; Lister, D.H. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Ghamry, E.; Mohamed, E.K.; Abdalzaher, M.S.; Elwekeil, M.; Marchetti, D.; Santis, A.D.; Hegy, M.; Yoshikawa, A.; Fathy, A. Integrating Pre-Earthquake signatures from different precursor tools. IEEE Access 2021, 9, 33268–33283. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Chen, M.H.; Deng, Z.H.; Yang, Z.Z.; Ma, X.J. Anomaly of Latent Heat Flux before the 2004 M9 Earthquake in Indonesia. Sci. Bull. 2006, 1, 118–120. [Google Scholar]
- Li, D.X. Dynamics of Twisting Structures-Theory. In Methods and Applications; Geology Press: Beijing, China, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Ma, W.; Yu, C.; Zhao, J.; Niu, A. Air Temperature Variations in Multiple Layers of the Indonesia Earthquake Based on the Tidal Forces. Remote Sens. 2023, 15, 4852. https://doi.org/10.3390/rs15194852
Lu X, Ma W, Yu C, Zhao J, Niu A. Air Temperature Variations in Multiple Layers of the Indonesia Earthquake Based on the Tidal Forces. Remote Sensing. 2023; 15(19):4852. https://doi.org/10.3390/rs15194852
Chicago/Turabian StyleLu, Xian, Weiyu Ma, Chen Yu, Jing Zhao, and Anfu Niu. 2023. "Air Temperature Variations in Multiple Layers of the Indonesia Earthquake Based on the Tidal Forces" Remote Sensing 15, no. 19: 4852. https://doi.org/10.3390/rs15194852
APA StyleLu, X., Ma, W., Yu, C., Zhao, J., & Niu, A. (2023). Air Temperature Variations in Multiple Layers of the Indonesia Earthquake Based on the Tidal Forces. Remote Sensing, 15(19), 4852. https://doi.org/10.3390/rs15194852