A New Electrical Resistivity Tomography Scheme of Borehole-to-Surface-to-Cliff Detection and Imaging for Grotto Rock Structure
Abstract
:1. Introduction
2. Methodology
2.1. 2.5-D ERT Simulation
2.2. Gauss-Newton Inversion
3. ERT Electrode Configurations
3.1. ERT Configurations and Sensitivity Analysis
3.2. ERT Schemes for Grottoes and Sensitivity Analysis
4. Numerical Experiments and Results
4.1. Numerical Experiment for the Block Model
4.2. Numerical Experiments for Grotto Model with Water Seepage Structure
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.X.; Duan, Y.H.; Deng, J.Y. Geological Protection Project of the Longmen Grottoes in Luoyang. Adv. Mater. Res.-Switz 2012, 155, 594–597. [Google Scholar] [CrossRef]
- Qu, J.; Cao, S.; Li, G.; Niu, Q.; Feng, Q. Conservation of natural and cultural heritage in Dunhuang, China. Gondwana Res. 2014, 26, 1216–1221. [Google Scholar] [CrossRef]
- Zhou, S.W.; Xia, C.C.; Huang, M. Long-term stability of rock pillars in the Longyou Ancient Grottoes: Sonic wave detection and numerical investigation. Anc. Undergr. Open. Preserv. 2016, 395–400. [Google Scholar]
- Wang, X.D.; Wang, Y.W.; Guo, Q.L.; Pei, Q.Q.; Zhao, G.J. The history of rescuing reinforcement and the preliminary study of preventive protection system for the cliff of Mogao Grottoes in Dunhuang, China. Herit. Sci. 2021, 9, 58. [Google Scholar] [CrossRef]
- Kai, L.; Li, Z.Y.; Niu, R.Q.; Fan, L.; Pan, J.W.; Li, K.T.; Liang, C. Using surface nuclear magnetic resonance and spontaneous potential to investigate the source of water seepage in the JinDeng Temple grottoes, China. J. Cult. Herit. 2020, 45, 142–151. [Google Scholar]
- Wanfu, W. Detection of Delamination in Wall Paintings by Ground Penetrating Radar. In Behaviour of Electromagnetic Waves in Different Media and Structures; Ali, A., Ed.; IntechOpen: Rijeka, Croatia, 2011; p. 7. [Google Scholar]
- Joshi, M.; Prasobh, P.R.; Rajappan, S.; Rao, B.P.; Gond, A.; Misra, A.; Eldhose, K.; Nandakumar, V.; Tomson, J.K. Detection of soil pipes through remote sensing and electrical resistivity method: Insight from southern Western Ghats, India. Quatern Int. 2021, 575, 51–61. [Google Scholar] [CrossRef]
- Joshi, M.; Gond, A.; Prasobh, P.R.; Rajappan, S.; Padma Rao, B.; Nandakumar, V. Chapter 5—Significance and limit of electrical resistivity survey for detection sub surface cavity: A case study from, Southern Western Ghats, India. In Basics of Computational Geophysics; Samui, P., Dixon, B., Tien Bui, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 81–93. [Google Scholar]
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Bouzidi, Y.; Ullah, S.; Asim, M. A full-range gradient survey for 2D electrical resistivity tomography. Near Surf. Geophys. 2020, 18, 609–626. [Google Scholar] [CrossRef]
- Tsourlos, P.; Ogilvy, R.; Papazachos, C.; Meldrum, P. Measurement and inversion schemes for single borehole-to-surface electrical resistivity tomography surveys. J. Geophys. Eng. 2011, 8, 487–497. [Google Scholar] [CrossRef]
- Goes, B.J.M.; Meekes, J.A.C. An effective electrode configuration for the detection of DNAPLs with electrical resistivity tomography. J. Environ. Eng. Geoph. 2004, 9, 127–141. [Google Scholar] [CrossRef]
- Wang, H.R.; Lin, C.P. Cause and countermeasures for the symmetric effect in borehole-to-surface electrical resistivity tomography. J. Appl. Geophys. 2018, 159, 248–259. [Google Scholar] [CrossRef]
- LaBrecque, D.J.; Ramirez, A.L.; Daily, W.D.; Binley, A.M.; Schima, S.A. ERT monitoring of environmental remediation processes. Meas. Sci. Technol. 1996, 7, 375–383. [Google Scholar] [CrossRef]
- Wang, H.R.; Lin, C.P.; Mok, T.H.; Wu, P.L.; Liu, H.C. High-fidelity subsurface resistivity imaging incorporating borehole measurements for monitoring underground construction. Eng. Geol. 2022, 299, 106558. [Google Scholar] [CrossRef]
- McCormack, T.; O’Connell, Y.; Daly, E.; Gill, L.W.; Henry, T.; Perriquet, M. Characterisation of karst hydrogeology in Western Ireland using geophysical and hydraulic modelling techniques. J. Hydrol.-Reg. Stud. 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Tejero-Andrade, A.; Argote-Espino, D.L.; Cifuentes-Nava, G.; Hernandez-Quintero, E.; Chavez, R.E.; Garcia-Serrano, A. ‘Illuminating’ the interior of Kukulkan’s Pyramid, Chichen Itza, Mexico, by means of a non-conventional ERT geophysical survey. J. Archaeol. Sci. 2018, 90, 1–11. [Google Scholar] [CrossRef]
- Imani, P.; Tian, G.; Hadiloo, S.; Abd El-Raouf, A. Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China. J. Appl. Geophys. 2021, 184, 104236. [Google Scholar] [CrossRef]
- Guo, Y.J.; Cui, Y.A.; Xie, J.; Luo, Y.J.; Zhang, P.F.; Liu, H.F.; Liu, J.X. Seepage detection in earth-filled dam from self-potential and electrical resistivity tomography. Eng. Geol. 2022, 306, 106750. [Google Scholar] [CrossRef]
- Su, M.X.; Liu, Y.M.; Li, H.Y.; Li, C.C.; Wang, P.; Ma, X.Y. Water Inrush Detection in Limestone Pit Rock Walls Using Borehole-to-Surface ERT. Mine Water Environ. 2021, 40, 1061–1072. [Google Scholar] [CrossRef]
- Leontarakis, K.; Apostolopoulos, G.V. Model Stacking (MOST) technique applied in cross-hole ERT field data for the detection of Thessaloniki ancient walls’ depth. J. Appl. Geophys. 2013, 93, 101–113. [Google Scholar] [CrossRef]
- Li, N.B.; Dong, Z.; Liu, Z.Y.; Yan, B.; Wang, K.; Nie, L.C.; Lin, C.J.; Shen, J.F.; Ma, Z.; Zhang, Y.H. Synthetic Study of Boulder Detection Using Multi-Configuration Combination of Cross-Hole ERT and Its Field Application in Xiamen Metro, China. Appl. Sci. 2021, 11, 11860. [Google Scholar] [CrossRef]
- Huang, J.Z.; Ren, J.G. Geophysical prospecting method applied in the preservation of Yungang Grottoes. Sci. Conserv. Archaeol. 2011, 23, 87–95. (In Chinese) [Google Scholar]
- Fang, Y.; Qiao, L.; Yan, X.F.; Chen, H.L.; Liu, J.P. The application of geophysical technology in the conservation of Dazu rock cavings. Geophys. Geochem. Explor. 2013, 37, 138–142. (In Chinese) [Google Scholar]
- Keigo, K.; Kazuhiro, O.; Misae, I.; Piao, C.Z.; Chikaosa, T.; Yoshinori, I.; Mitsugu, Y.; Wang, X.D.; Guo, Q.L.; Yang, S.L. Estimation of Hydraulic Environment behind the Mogao Grottoes Based on Geophysical Explorations and Laboratory Experiment. Eng. Geol. Soc. Territ. Preserv. Cult. Herit. 2015, 8, 71–74. [Google Scholar]
- Sun, M.; Zhang, J.; Zhang, L.; Wang, X.; Guo, Q.; Pei, Q.; Wang, Y. Multi-electrode resistivity survey for the moisture distribution characteristics of the cliff of Mogao Grottoes. Bull. Eng. Geol. Environ. 2022, 81, 489. [Google Scholar] [CrossRef]
- Liu, H.L.; Wang, X.D.; Guo, Q.L.; Zhang, M.Q.; Wang, Y.W. Experimental investigation on the correlation between rainfall infiltration and the deterioration of wall paintings at Mogao Grottoes, China. B Eng. Geol. Environ. 2020, 79, 1199–1207. [Google Scholar] [CrossRef]
- Mao, D.Q.; Wang, X.D.; Meng, J.; Ma, X.M.; Jiang, X.W.; Wan, L.; Yan, H.B.; Fan, Y. Infiltration Assessments on Top of Yungang Grottoes by Time-Lapse Electrical Resistivity Tomography. Hydrology 2022, 9, 77. [Google Scholar] [CrossRef]
- Blanchy, G.; Saneiyan, S.; Boyd, J.; McLachlan, P.; Binley, A. ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling. Comput. Geosci. 2020, 137, 104423. [Google Scholar] [CrossRef]
- LaBrecque, D.J.; Miletto, M.; Daily, W.; Ramirez, A.; Owen, E. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 1996, 61, 538–548. [Google Scholar] [CrossRef]
- Xu, S.Z.; Duan, B.C.; Zhang, D.H. Selection of the wavenumbers k using an optimization method for the inverse Fourier transform in 2.5D electrical modelling. Geophys. Prospect. 2000, 48, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Kemna, A. Tomographic Inversion of Complex Resistivity-Theory and Application. Ph.D. Dissertation, Ruhr-University of Bochum, Bochum, Germany, 2000. [Google Scholar]
- Karaoulis, M.; Revil, A.; Tsourlos, P.; Werkema, D.D.; Minsley, B.J. IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography. Comput. Geosci. 2013, 54, 164–170. [Google Scholar] [CrossRef]
- Binley, A. Tools and Techniques: Electrical Methods. In Treatise on Geophysics; Schubert, G., Ed.; Elsevier: Oxford, UK, 2015; pp. 233–259. [Google Scholar]
- Binley, A.; Kemna, A. DC Resistivity and Induced Polarization Methods. In Hydrogeophysics; Rubin, Y., Hubbard, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 129–156. [Google Scholar]
- Park, S.K.; Van, G.P. Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics 1991, 56, 951–960. [Google Scholar] [CrossRef]
- Tsokas, G.N.; Tsourlos, P.I.; Kim, J.H.; Papazachos, C.B.; Vargemezis, G.; Bogiatzis, P. Assessing the Condition of the Rock Mass over the Tunnel of Eupalinus in Samos (Greece) using both Conventional Geophysical Methods and Surface to Tunnel Electrical Resistivity Tomography. Archaeol. Prospect 2014, 21, 277–291. [Google Scholar] [CrossRef]
Surface ERT Scheme | BS ERT Scheme | BC ERT Scheme | SC ERT Scheme | cliff ERT Scheme | |
A-MN array | a = 1–10 m, scanning for each electrode, Data volume: 615 | a = 1–10 m, scanning for each electrode, Data volume: 2900 | a = 1–10 m, scanning for each electrode, Data volume: 2900 | a = 1–10 m, scanning for each electrode, Data volume: 2900 | a = 1–10 m, scanning for each electrode, Data volume: 615 |
AB-MN array | a = 1–6 m, scanning for each electrode, Data volume: 378 | a = 1–10 m, scanning for each electrode, Data volume: 2185 | a = 1–10 m, scanning for each electrode, Data volume: 2185 | a = 1–10 m, scanning for each electrode, Data volume: 2185 | a = 1–6 m, scanning for each electrode, Data volume: 378 |
AM-BN array | a = 1–6 m, scanning for each electrode, Data volume: 378 | a = 1–10 m, scanning for each electrode, Data volume: 2185 | a = 1–10 m, scanning for each electrode, Data volume: 2185 | a = 1–10 m, scanning for each electrode, Data volume: 2185 | a = 1–6 m, scanning for each electrode, Data volume: 378 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Zeng, Z.; Zhao, X.; An, B.; Bai, L.; Zhao, J.; Li, J. A New Electrical Resistivity Tomography Scheme of Borehole-to-Surface-to-Cliff Detection and Imaging for Grotto Rock Structure. Remote Sens. 2023, 15, 311. https://doi.org/10.3390/rs15020311
Yan J, Zeng Z, Zhao X, An B, Bai L, Zhao J, Li J. A New Electrical Resistivity Tomography Scheme of Borehole-to-Surface-to-Cliff Detection and Imaging for Grotto Rock Structure. Remote Sensing. 2023; 15(2):311. https://doi.org/10.3390/rs15020311
Chicago/Turabian StyleYan, Jiahe, Zhaofa Zeng, Xueyu Zhao, Baizhou An, Lige Bai, Jianwei Zhao, and Jing Li. 2023. "A New Electrical Resistivity Tomography Scheme of Borehole-to-Surface-to-Cliff Detection and Imaging for Grotto Rock Structure" Remote Sensing 15, no. 2: 311. https://doi.org/10.3390/rs15020311
APA StyleYan, J., Zeng, Z., Zhao, X., An, B., Bai, L., Zhao, J., & Li, J. (2023). A New Electrical Resistivity Tomography Scheme of Borehole-to-Surface-to-Cliff Detection and Imaging for Grotto Rock Structure. Remote Sensing, 15(2), 311. https://doi.org/10.3390/rs15020311