Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region
Abstract
:1. Introduction
2. GNSS Tomographic Modeling
2.1. GNSS Tomographic Observation
2.2. Adaptive Voxel Parameterization
2.2.1. Determination and Discretization of the Tomographic Region
- (1)
- Determination of the pixels crossed by the projection of GNSS signals
- (2)
- Determination of the voxels crossed by the GNSS signals
2.2.2. Construction of Tomographic Equations
3. Experiments and Results
3.1. Tomographic Region and Strategy
- (1)
- GFR: general voxel approach with a fixed cuboid tomographic region;
- (2)
- AAR: adaptive voxel parameterization with an accurate tomographic region.
3.2. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.; Liu, Z. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res. -Atmos. 2016, 121, 11,442–11,462. [Google Scholar] [CrossRef]
- Ye, H.; Fetzer, E.J.; Wong, S.; Behrangi, A.; Yang, D.; Lambrigtson, B.H. Increasing atmospheric water vapor and higher daily precipitation intensity over northern Eurasia. Geophys. Res. Lett. 2016, 42, 9404–9410. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z.; Wong, W.; Woo, W. Detecting Water Vapor Variability during Heavy Precipitation Events in Hong Kong Using the GPS Tomographic Technique. J. Atmos. Ocean. Tech. 2017, 34, 1001–1019. [Google Scholar] [CrossRef]
- Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 2000, 18, 223–234. [Google Scholar] [CrossRef]
- Gradinarsky, L.P. Sensing Atmospheric Water Vapor Using Radio Waves. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2002. [Google Scholar]
- Champollion, C.; Masson, F.; Bouin, M.N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J. GPS water vapour tomography: Preliminary results from the ESCOMPTE field experiment. Atmos. Res. 2005, 74, 253–274. [Google Scholar] [CrossRef] [Green Version]
- Troller, M.; Geiger, A.; Brockmann, E.; Bettems, J.M.; Burki, B.; Kahle, H.G. Tomographic determination of the spatial distribution of water vapor using GPS observations. ASR 2006, 37, 2211–2217. [Google Scholar] [CrossRef]
- Rohm, W.; Bosy, J. Local tomography troposphere model over mountains area. Atmos. Res. 2009, 93, 777–783. [Google Scholar] [CrossRef]
- Perler, D.; Geiger, A.; Hurter, F. 4D GPS water vapor tomography: New parameterized approaches. J. Geod. 2011, 85, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Manning, T. Sensing the Dynamics of Severe Weather Using 4D GPS Tomography in the Australian Region. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2013. [Google Scholar]
- Chen, B.; Liu, Z. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J. Geodesy. 2014, 88, 691–703. [Google Scholar] [CrossRef]
- Jiang, P.; Ye, S.R.; Liu, Y.Y.; Zhang, J.J.; Xia, P.F. Near real-time water vapor tomography using ground-based GPS and meteorological data: Long-term experiment in Hong Kong. Ann. Geophys. -Ger. 2014, 32, 911–923. [Google Scholar] [CrossRef]
- Rohm, W.; Zhang, K.; Bosy, J. Limited constraint, robust Kalman filtering for GNSS troposphere tomography. Atmos. Meas. Tech. 2014, 7, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Xia, P.; Cai, C. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data. Ann. Geophys. 2016, 34, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Haji Aghajany, S.; Amerian, Y. Three dimensional ray tracing technique for tropospheric water vapor tomography using GPS measurements. J. Atmos. SolL-Terr. Phy. 2017, 164, 81–88. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, S.B.; Wu, S.Q.; Wang, X.M.; Zhang, K.F. Adaptive Node Parameterization for Dynamic Determination of Boundaries and Nodes of GNSS Tomographic Models. J. Geophys. Res. Atmos. 2018, 123, 1990–2003. [Google Scholar] [CrossRef]
- Yao, Y.; Xin, L.; Zhao, Q. An improved pixel-based water vapor tomography model. Ann. Geophys. 2019, 37, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Rohm, W.; Bosy, J. The verification of GNSS tropospheric tomography model in a mountainous area. Adv. Space. Res. 2011, 47, 1721–1730. [Google Scholar] [CrossRef]
- Nilsson, T.; Gradinarsky, L. Water vapor tomography using GPS phase observations: Simulation results. IEEE. T Geosci. Remote. 2006, 44, 2927–2941. [Google Scholar] [CrossRef]
- Sudhir, M.S. Investigations into the Estimation of Tropospheric Delay and Wet Refractivity Using GPS Measurements. Ph.D. Thesis, Department of Geomatics Engineering, University of Calgary, Calgary, AB, Canada, 2003. [Google Scholar]
- Yao, Y.; Liu, C.; Xu, C. A New GNSS-Derived Water Vapor Tomography Method Based on Optimized Voxel for Large GNSS Network. Remote Sens. 2020, 12, 2306. [Google Scholar] [CrossRef]
- Hu, H.; Liu, M.; Zhong, J.; Deng, X.; Cao, Y.; Fang, P. A Case Study of the 3D Water Vapor Tomography Model Based on a Fast Voxel Traversal Algorithm for Ray Tracing. Remote Sens. 2021, 13, 2422. [Google Scholar] [CrossRef]
- Shoji, Y.; Nakamura, H.; Iwabuchi, T.; Aonashi, K.; Seko, H.; Mishima, K.; Itagaki, A.; Ichikawa, R.; Ohtani, R. Tsukuba GPS dense net campaign observation: Improvement in GPS analysis of slant path delay by stacking one-way postfit phase residuals. J. Meteorol. Soc. Japan. 2004, 82, 301–314. [Google Scholar] [CrossRef]
- Kačmařík, M.; Douša, J.; Dick, G.; Zus, F.; Brenot, H.; Möller, G.; Pottiaux, E.; Kapłon, J.; Hordyniec, P.; Václavovic, P. Inter-technique validation of tropospheric slant total delays. Atmos. Meas. Tech. 2017, 10, 2183–2208. [Google Scholar] [CrossRef] [Green Version]
- Bar-Sever, Y.E.; Kroger, P.M.; Borjesson, J.A. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J. Geophys. Res.-Sol. Ea. 1998, 103, 5019–5035. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl Met. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Kui, Y.L. An All-integer Algorithm for Drawing Anti-aliased Straight Lines. Comput. Graph. Forum. 1994, 13, 219–221. [Google Scholar] [CrossRef]
- Amanatides, J.; Woo, A. A Fast Voxel Traversal Algorithm for Ray Tracing. Eurographics 1987, 87, 3–10. Available online: https://www.cse.chalmers.se/edu/year/2012/course/_courses_2011/TDA361/grid.pdf (accessed on 10 January 2023).
Type of Number | Classification |
---|---|
1 | Ys/Xs > |y1 − y2|/|x1 − x2|; x1 − x2 < 0; y1 − y2 < 0 |
2 | Ys/Xs > |y1 − y2|/|x1 − x2|; x1 − x2 < 0; y1 − y2 > 0 |
3 | Ys/Xs > |y1 − y2|/|x1 − x2|; x1 − x2 > 0; y1 − y2 < 0 |
4 | Ys/Xs > |y1 − y2|/|x1 − x2|; x1 − x2 > 0; y1 − y2 > 0 |
5 | Ys/Xs < |y1 − y2|/|x1 − x2|; x1 − x2 < 0; y1 − y2 < 0 |
6 | Ys/Xs < |y1 − y2|/|x1 − x2|; x1 − x2 < 0; y1 − y2 > 0 |
7 | Ys/Xs < |y1 − y2|/|x1 − x2|; x1 − x2 > 0; y1 − y2 < 0 |
8 | Ys/Xs < |y1 − y2|/|x1 − x2|; x1 − x2 > 0; y1 − y2 > 0 |
Statistic | Approach | UTC 0 | UTC 12 | ||
---|---|---|---|---|---|
DOY 245 | DOY 259 | DOY 245 | DOY 259 | ||
RMSE (g/m3) | GFR (Figure 6a1–a4) | 2.731 | 1.458 | 1.747 | 2.111 |
AAR (Figure 6b1–b4) | 0.941 | 0.722 | 1.231 | 0.932 | |
Bias (g/m3) | GFR (Figure 6a1–a4) | −1.170 | −0.969 | −0.488 | −1.692 |
AAR (Figure 6b1–b4) | −0.081 | 0.125 | −0.047 | −0.253 | |
IQR (g/m3) | GFR (Figure 6a1–a4) | 3.844 | 1.309 | 2.438 | 2.023 |
AAR (Figure 6b1–b4) | 1.329 | 0.839 | 0.825 | 0.791 |
Statistics | RMSE (g m−3) | Bias (g m−3) | IQR (g m−3) | Outliers Rejected (%) | |
---|---|---|---|---|---|
Methods | |||||
GFR | 2.107 | −0.438 | 1.848 | 5.3 | |
AAR | 0.942 | 0.077 | 0.966 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, N.; Tan, X.; Liu, X.; He, Z.; Zhang, Y.; Wang, Y.; Zhang, S.; Holden, L.; Zhang, K. Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region. Remote Sens. 2023, 15, 492. https://doi.org/10.3390/rs15020492
Ding N, Tan X, Liu X, He Z, Zhang Y, Wang Y, Zhang S, Holden L, Zhang K. Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region. Remote Sensing. 2023; 15(2):492. https://doi.org/10.3390/rs15020492
Chicago/Turabian StyleDing, Nan, Xinglong Tan, Xin Liu, Zhifen He, Yu Zhang, Yuchen Wang, Shubi Zhang, Lucas Holden, and Kefei Zhang. 2023. "Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region" Remote Sensing 15, no. 2: 492. https://doi.org/10.3390/rs15020492
APA StyleDing, N., Tan, X., Liu, X., He, Z., Zhang, Y., Wang, Y., Zhang, S., Holden, L., & Zhang, K. (2023). Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region. Remote Sensing, 15(2), 492. https://doi.org/10.3390/rs15020492