Time Series of Land Cover Mappings Can Allow the Evaluation of Grassland Protection Actions Estimated by Sustainable Development Goal 15.1.2 Indicator: The Case of Murgia Alta Protected Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
- The Common Agricultural Policy (CAP) which has driven the transformation of grassland pastures into cereal crops by stone clearance;
- Fire events;
- The illegal waste and toxic mud dumping on transformed areas which has caused heavy metal contamination of soils and aquifers;
- The increasing of traditional legal and illegal mining activities and wind farm infrastructure;
- The decrease of long-term average rainfall as a result of climate change and global warming;
2.2. Data Availability
2.3. Methodology
2.3.1. Time Series of Grasslands Cover
Accuracy Assessment of Grasslands Cover Mappings
2.3.2. SDG 15.1.2 Indicator Computation
3. Results
- Generation of time series of LC maps and extraction of grasslands cover for the period 1990–2021 (one mapping for each of the following years: 1990, 2001, 2004, 2011, 2018, 2021);
- Computation of time series of SDG 15.1.2 indicator for the N2K PA and national park categories by using the time series of grasslands mappings and analysis of the temporal trend.
3.1. Time Series of Grasslands Cover
3.2. Grasslands Cover Temporal Trend
- Comparing 2011 and 2018: important large fire events (mapped from the official fire registry) which happened after 2011 in forested areas can be focused on. One fire event happened in 2012 and the other two events happened in the same area in July 2011 (where partial regrowth of grasslands was already detected with the 2011 mapping by using August and October images for the mapping) and in 2015 for the second time (Figure 12). Hence, these fire events can allow to explain the 2018 grasslands increase with respect to the previous one in 2011.
- Comparing 2021 and 2018: either several areas with misclassification (2021 grasslands mapping reported the lowest OA) can be evidenced or recent burn areas for which no official mapped data are available from the official fire registry. Some of these areas are located outside the national park boundary (Figure 13). Hence, these considerations can allow to explain the 2021 grasslands lost with respect to the previous 2018 mapping.
4. Discussion
4.1. Time Series of Grasslands Cover Mappings
4.2. Grasslands Cover Spatio-Temporal Trend
- National park action on the territory has resulted effective to preserve the grasslands ecosystem conservation;
- National park protection actions have resulted more effective than those of N2K network implemented in the area since 1998.
5. Conclusions
- RS is a powerful tool for environmental monitoring because it provides both temporal and spatial information [11];
- The availability of free time series of satellite data at high spatial resolution can offer the possibility for a long-term analysis on wide areas at a local scale. As a result, the costs for expensive in-field campaigns can be reduced and updated time series of LC mappings can be available whenever needed;
- Working at the local scale along with using AI techniques allow to obtain more accurate mappings than those offered by the available Copernicus services;
- Time series of SDG 15.1.2 indicator can allow the estimation of the spatio-temporal dynamics of an ecosystem in relation to the levels of protection featured on the territory, providing support in estimating the effectiveness and impact of protection and conservation actions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suttie, J.M.; Reynolds, S.G.; Batello, C. Grasslands of the World; FAO: Rome, Italy, 2005. [Google Scholar]
- Lemaire, G.; Hodgson, J.; Chabbi, A. Grassland Productivity and Ecosystem Services; CABI Digital Library: Long Beach, CA, USA, 2011. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands–more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Schuster, C.; Schmidt, T.; Conrad, C.; Kleinschmit, B.; Forster, M. Grassland habitat mapping by intra-annual time-series analysis-Comparison of RapidEye and TerraSAR-X satellite data. Int. J. Appl. Earth Obs. GeoInf. 2015, 34, 25–34. [Google Scholar] [CrossRef]
- Partel, M.; Bruun, H.; Sammul, M. Biodiversity in temperate European grasslands: Origin and conservation. Integrating efficient grassland farming and biodiversity. In Grassland Science in Europe; Lillak, R., Viiralt, R., Linke, A., Geherman, V., Eds.; Estonian Grassland Society: Tartu, Estonia, 2005; Volume 10, pp. 1–14. [Google Scholar]
- Eriksson, O.; Cousins, S.; Bruun, H. Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J. Veg. Sci. 2002, 13, 743–748. [Google Scholar] [CrossRef]
- CBD. Available online: https://www.cbd.int/convention/articles/?a=cbd-01 (accessed on 6 October 2022).
- HaD, Habitat Directive 92/43/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31992L0043 (accessed on 6 October 2022).
- BD, Bird Directive 2009/147/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009L0147 (accessed on 6 October 2022).
- Natura 2000, EU. Available online: https://ec.europa.eu/environment/nature/natura2000/index_en.htm (accessed on 7 October 2022).
- Buck, O.; Garcia Millàn, V.E.; Klink, A.; Pakzad, K. Using information layers for mapping grassland habitat distribution at local to regional scales. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 83–89. [Google Scholar] [CrossRef]
- Wellstein, C.; Poschlod, P.; Gohlke, A.; Chelli, S.; Campetella, G.; Rosbakh, S.; Canullo, R.; Kreyling, J.; Jentsch, A.; Beierkuhnlein, C. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Glob. Chang. Biol. 2017, 23, 2473–2481. [Google Scholar] [CrossRef] [PubMed]
- Fauvel, M.; Lopes, M.; Dubo, T.; Rivers-Moore, J.; Frison, P.; Gross, N.; Ouin, A. Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time-series. Remote Sens. Environ. 2020, 237, 111536. [Google Scholar] [CrossRef]
- Forte, L.; Perrino, E.V.; Terzi, M. Le praterie a Stipa austroitalica Martinovsky ssp. austroitalica dell’Alta Murgia (Puglia) e della Murgia Materana (Basilicata). Fitosociologia 2005, 42, 83–103. [Google Scholar]
- Geldmann, J.; Barnes, M.; Coad, L.; Craigie, I.D.; Hockings, M.; Burgess, N.D. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 2013, 161, 230–238. [Google Scholar] [CrossRef]
- CLC Portal. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 7 October 2022).
- HR Grassland Copernicus Portal. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/grassland (accessed on 7 October 2022).
- Tarantino, C.; Forte, L.; Blonda, P.; Vicario, S.; Tomaselli, V.; Beierkuhnlein, C.; Adamo, M. Intra-Annual Sentinel-2 Time-Series Supporting Grassland Habitat Discrimination. Remote Sens. 2021, 13, 277. [Google Scholar] [CrossRef]
- Trisurat, Y.; Eiumnoh, A.; Murai, S.; Hussain, M.Z.; Shrestha, R.P. Improvement of tropical vegetation mapping using a remote sensing technique: A case of Khao Yai National Park, Thailand. Int. J. Remote Sens. 2000, 21, 2031–2042. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Badreldin, N.; Prieto, B.; Fisher, R. Mapping Grasslands in Mixed Grassland Ecoregion of Saskatchewan Using Big Remote Sensing Data and Machine Learning. Remote Sens. 2021, 13, 4972. [Google Scholar] [CrossRef]
- Abdollahi, A.; Liu, Y.; Pradhan, B.; Huete, A.; Dikshit, A.; Nguyen Tran, N. Short-time-series grassland mapping using Sentinel-2 imagery and deep learning-based architecture. Egypt. J. Remote Sens. Space Sci. 2022, 25, 673–685. [Google Scholar] [CrossRef]
- Adamo, M.; Tomaselli, V.; Tarantino, C.; Vicario, S.; Veronico, G.; Lucas, R.; Blonda, P. Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy. Remote Sens. 2020, 12, 1447. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Li, L.; Fritz, A. Mapping degraded grassland on the Eastern Tibetan Plateau with multi-temporal Landsat 8 data—Where do the severely degraded areas occur? Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 115–127. [Google Scholar] [CrossRef]
- Li, C.; de Jong, R.; Schmid, B.; Wulf, H.; Schaepman, M.E. Changes in grassland cover and in its spatial heterogeneity indicate degradation on the Qinghai-Tibetan Plateau. Ecol. Indic. 2020, 119, 106641. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Grabska, E.; Frantz, D.; Ostapowicz, K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians. Remote Sens. Environ. 2020, 251, 112103. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Olsen, L.M.; Washington-Allen, R.A.; Dale, V.H. Time-Series Analysis of Land Cover Using Landscape Metrics. GIScience Remote Sens. 2005, 42, 200–223. [Google Scholar] [CrossRef]
- Weiers, S.; Bock, M.; Wissen, M. Mapping and Indicator Approaches for the Assessment of Habitats at Different Scales Using Remote Sensing and GIS Methods. Landsc. Urban Plan. 2004, 67, 43–65. [Google Scholar] [CrossRef]
- De Simone, L.; Navarro, D.; Gennari, P.; Pekkarinen, A.; de Lamo, J. Using Standardized Time Series Land Cover Maps to Monitor the SDG Indicator “Mountain Green Cover Index” and Assess Its Sensitivity to Vegetation Dynamics. ISPRS Int. J. Geo-Inf. 2021, 10, 427. [Google Scholar] [CrossRef]
- Liu, S.; Bai, J.; Chen, J. Measuring SDG 15 at the County Scale: Localization and Practice of SDGs Indicators Based on Geospatial Information. ISPRS Int. J. Geo-Inf. 2019, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Kavvada, A.; Metternicht, G.; Kerblat, F.; Mudau, N.; Haldorson, M.; Laldaparsad, S.; Friedl, L.; Held, A.; Chuvieco, E. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ. 2020, 247, 111930. [Google Scholar] [CrossRef]
- Cochran, F.; Daniel, J.; Jackson, L.; Neale, A. Earth observation-based ecosystem services indicators for national and subnational reporting of the sustainable development goals. Remote Sens. Environ. 2020, 244, 111796. [Google Scholar] [CrossRef] [PubMed]
- Masò, J.; Serral, I.; Domingo-Marimon, C.; Zabala, A. Earth observations for sustainable development goals monitoring based on essential variables and driver-pressure-state-impact-response indicators. Int. J. Digit. Earth 2019, 13, 217–235. [Google Scholar] [CrossRef] [Green Version]
- ISPRA. Elements for the Update of Technical Standards in the Field of Environmental Assessment; 109/2014; ISPRA: Rome, Italy, 2014; p. 43. Available online: www.isprambiente.gov.it/files/pubblicazioni/manuali-lineeguida/MLG_109_2014.pdf (accessed on 5 January 2023).
- Mairota, P.; Leronni, V.; Xi, W.; Mladenoff, D.; Nagendra, H. Using spatial simulations of habitat modification for adaptive management of protected areas: Mediterranean grassland modification by woody plant encroachment. Environ. Conserv. 2013, 41, 144–146. [Google Scholar] [CrossRef]
- European Commission, Nature and Biodiversity. Available online: https://ec.europa.eu/environment/nature/conservation/index_en.htm (accessed on 8 July 2022).
- Mairota, P.; Cafarelli, B.; Labadessa, R.; Lovergine, F.; Tarantino, C.; Lucas, R.M.; Nagendra, H.; Didham, R.K. Very high resolution Earth observation features for monitoring plant and animal community structure across multiple spatial scales in protected areas. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 100–105. [Google Scholar] [CrossRef]
- Tarantino, C.; Casella, F.; Adamo, M.; Lucas, R.; Beierkuhnlein, C.; Blonda, P. Ailanthus altissima mapping from multi-temporal very high resolution satellite images. ISPRS J. Photogram. Remote Sens. 2019, 147, 90–103. [Google Scholar] [CrossRef]
- LifeWatch ERIC Validation Case. Available online: https://www.lifewatch.eu/internal-joint-initiative/validation-cases/stop-the-alien-invasion-detection-and-control-of-ailanthus-altissima/ (accessed on 8 July 2022).
- United States Geological Survey (USGS) EarthExplorer Portal. Available online: https://earthexplorer.usgs.gov/ (accessed on 8 July 2022).
- ESA Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 8 July 2022).
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef]
- Di Gregorio, A.; Jansen, L.J.M. Land Cover Classification System (LCCS): Classification Concepts and User Manual; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; Available online: https://www.researchgate.net/publication/229839605_Land_Cover_Classification_System_LCCS_Classification_Concepts_and_User_Manual (accessed on 18 October 2022).
- Adamo, M.; Tarantino, C.; Tomaselli, V.; Veronico, G.; Nagendra, H.; Blonda, P. Habitat mapping of coastal wetlands using expert knowledge and Earth observation data. J. Appl. Ecol. 2016, 53, 1521–1532. [Google Scholar] [CrossRef] [Green Version]
- Adamo, M.; Tarantino, C.; Tomaselli, V.; Kosmidou, V.; Petrou, Z.; Manakos, I.; Lucas, R.M.; Mücher, C.A.; Veronico, G.; Marangi, C.; et al. Expert knowledge for translating land cover/use maps to general habitat categories (GHC). Landsc. Ecol. 2014, 29, 1045–1067. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.M.; Blonda, P.; Bunting, P.F.; Jones, G.; Inglada, J.; Arias, M.; Kosmidou, V.; Petrou, Z.; Manakos, I.; Adamo, M.; et al. The Earth observation data for habitat monitoring (EODHaM) system. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 17–28. [Google Scholar] [CrossRef]
- Tomaselli, V.; Dimopoulos, P.; Marangi, C.; Kallimanis, A.S.; Adamo, M.; Tarantino, C.; Panitsa, M.; Terzi, M.; Veronico, G.; Lovergine, F.; et al. Translating land cover/land use classifications to habitat taxonomies for landscape monitoring: A Mediterranean assessment. Landsc. Ecol. 2013, 28, 905–930. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 6, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.A.; Gloaguen, R. Improving lithological mapping by SVM classification of spectral and morphological features: The discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sens. 2014, 6, 6867–6896. [Google Scholar] [CrossRef] [Green Version]
- Yang, X. Parameterizing support vector machines for land cover classification. Photogramm. Eng. Remote Sens. 2011, 77, 27–38. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Tarantino, C.; Adamo, M.; Lucas, R.; Blonda, P. Detection of changes in semi-natural grasslands by cross correlation analysis with WorldView-2 images and new Landsat 8 data. Remote Sens. Environ. 2016, 175, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Congalton, R.G.; Kass, G. Assessing the Accuracy of Remotely Sensed Data: Principle and Practices, 2nd ed.; Taylor & Francis Group: Abingdon, UK, 2009; ISBN 9781420055122. [Google Scholar]
- Sasaki, Y. Version: 26th October, 2007. The Truth of the F-Measure. Available online: https://www.cs.odu.edu/~mukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf (accessed on 31 August 2022).
- Shung, K.P. Accuracy, Precision, Recall or F1? Towards Data Science. Towards Data Science, 15 March 2018. Available online: https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9 (accessed on 31 December 2020).
- Liu, R.; Kuffer, M.; Persello, C. The Temporal Dynamics of Slums Employing a CNN-Based Change Detection Approach. Remote Sens. 2019, 11, 2844. [Google Scholar] [CrossRef] [Green Version]
- Towards Data Science. Available online: https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f (accessed on 24 November 2022).
- SDG UN Metadata. Available online: https://unstats.un.org/sdgs/metadata/ (accessed on 28 November 2022).
- SDG 15.1.2. Metadata. Available online: https://unstats.un.org/sdgs/metadata/files/Metadata-15-01-02.pdf (accessed on 1 September 2022).
- UN Environment Program (UNEP)—World Conservation Monitoring Service (WCMC), IUCN. “NGS (2018) Protected Planet Report 2018.” Cambridge UK, Gland, Switzerland, and Washington, DC, USA: UNEP-WCMC, IUCN and NGS. Available online: https://livereport.protectedplanet.net/pdf/Protected_Planet_Report_2018.pdf (accessed on 16 January 2022).
- World Database of Key Biodiversity Areas. Keybiodiversityareas.org, 2022. 2022. Available online: https://www.keybiodiversityareas.org/kba-data (accessed on 17 November 2022).
- QGIS.org. QGIS Python Plugins Repository. Available online: https://plugins.qgis.org/plugins/ (accessed on 11 July 2022).
- Regions & Environment Srls, Communication Agency and Publishing House, Italy. Available online: https://www.regionieambiente.it/stato-clima-italia-2021-ispra/ (accessed on 5 January 2023).
- Jongman, R.H.G.; Bouwma, I.M.; Griffioen, A.; Jones-Walters, L.; Van Doorn, A.M. The Pan European Ecological Network: PEEN. Landsc. Ecol. 2011, 26, 311–326. [Google Scholar] [CrossRef]
Year | Acquisition Date | Sensor | Spatial Resolution (m) | Bands |
---|---|---|---|---|
1990 | March, 1st May, 4th July, 23rd September, 25th | Landsat 5 TM | 30 | B1, B2, B3 (Vis) B4 (NIR) B5, B7 (SWIR) (6 bands) |
2001 | March, 15th June, 3rd August, 6th November, 26th | |||
2004 | February, 4th May, 26th August, 30th September, 15th | |||
2011 | February, 7th May, 14th August, 18th October 5th | |||
2018 | January, 30th April, 20th July, 19th October, 27th | Sentinel-2A/B | 10 | B2, B3, B4 (Vis) B5, B6, B7 (Red Edge) B8, B8A (NIR) B11, B12 (SWIR) (10 bands) |
2021 | February, 3rd May, 24th July, 23rd September, 26th |
Year | Res. (m) | N. Training Grasslands | N. Validation Grasslands |
---|---|---|---|
1990 | 30 | 10,731 (54.43%) | 6045 (55.69%) |
2001 | 30 | 9680 (51.95%) | 4994 (58.66%) |
2004 | 30 | 8531 (52.11%) | 4572 (55.06%) |
2011 | 30 | 8556 (51.88%) | 4518 (58.50%) |
2018 | 10 | 113,733 (56.04%) | 55,163 (62.36%) |
2021 | 10 | 113,594 (53.91%) | 58,362 (48.10%) |
Year | Res. (m) | OA (%) | Macro F1-Score (%) |
---|---|---|---|
1990 | 30 | 94.04 ± 0.39 | 89.07 |
2001 | 30 | 96.36 ± 0.35 | 92.37 |
2004 | 30 | 93.74 ± 0.46 | 83.07 |
2011 | 30 | 93.86 ± 0.46 | 82.11 |
2018 | 10 | 97.37 ± 0.09 | 94.24 |
2021 | 10 | 90.73 ± 0.37 | 89.60 |
Year | Source | Res. (m) | OA (%) | UA (%) | PA (%) | F1-Score (%) |
---|---|---|---|---|---|---|
1990 | Classified | 30 | 96.81 ± 0.17 | 97.52 ± 0.20 | 87.97 ± 0.24 | 92.49 |
CLC | 100 | 90.24 ± 0.86 | 84.77 ± 1.41 | 63.56 ± 0.97 | 72.65 | |
2000 | CLC | 100 | 90.59 ± 0.96 | 85.74 ± 1.51 | 63.60 ± 1.04 | 73.03 |
2001 | Classified | 30 | 98.40 ± 0.13 | 97.38 ± 0.23 | 92.40 ± 0.17 | 94.82 |
2004 | Classified | 30 | 97.80 ± 0.16 | 96.76 ± 0.26 | 88.88 ± 0.22 | 92.65 |
2006 | CLC | 100 | 90.06 ± 1.01 | 83.37 ± 1.66 | 58.33 ± 1.13 | 68.63 |
2011 | Classified | 30 | 95.94 ± 0.23 | 96.83 ± 0.23 | 79.67 ± 0.28 | 87.41 |
2012 | CLC | 100 | 87.01 ± 1.16 | 91.81 ± 1.35 | 52.21 ± 1.17 | 66.56 |
2018 | Classified | 10 | 99.45 ± 0.02 | 98.93 ± 0.04 | 97.75 ± 0.03 | 98.33 |
CLC | 100 | 86.08 ± 1.03 | 87.08 ± 1.38 | 50.61 ± 1.05 | 64.01 | |
Copernicus | 10 | 88.75 ± 0.10 | 92.40 ± 0.12 | 69.53 ± 0.12 | 79.35 | |
2021 | Classified | 10 | 95.70 ± 0.07 | 97.68 ± 0.06 | 77.81 ± 0.07 | 86.61 |
Year | Source | Res. (m) | N2K PA | National Park | 5-km Buffer Area | ||
---|---|---|---|---|---|---|---|
Coverage (ha) | SDG 15.1.2 (%) | Coverage (ha) | SDG 15.1.2 (%) | Coverage (ha) | |||
1990 | Classified | 30 | 49,489 | 34.21 | 33,587 | 23.44 | 923 |
CLC | 100 | 35,759 | 24.71 | 25,798 | 17.99 | 0 | |
2000 | CLC | 100 | 34,753 | 24.00 | 25,323 | 17.66 | 0 |
2001 | Classified | 30 | 36,916 | 25.49 | 25,665 | 17.92 | 783 |
2004 | Classified | 30 | 35,136 | 24.28 | 24,706 | 17.24 | 682 |
2006 | CLC | 100 | 30,511 | 21.11 | 22,933 | 15.98 | 0 |
2011 | Classified | 30 | 35,744 | 24.77 | 24,652 | 17.21 | 642 |
2012 | CLC | 100 | 32,932 | 22.80 | 25,676 | 17.88 | 0 |
2018 | Classified | 10 | 40,674 | 28.12 | 27,453 | 19.16 | 526 |
CLC | 100 | 33,261 | 23.03 | 26,009 | 18.11 | 0 | |
Copernicus | 10 | 42,694 | 29.52 | 27,404 | 19.09 | 15823 | |
2021 | Classified | 10 | 35,136 | 24.31 | 23,424 | 16.35 | 439 |
Initial State | |||
---|---|---|---|
1990: GRASSLANDS (%) | |||
Final state | 2001 | Unclassified | 0.19 |
Cultivated Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Evergreen | 4.68 | ||
Cultivated Terrestrial Vegetation/Trees.Broadleaved.Deciduous | 1.03 | ||
Cultivated Terrestrial Vegetation/Shrubs.Broadleaved.Deciduous | 0.10 | ||
Cultivated Terrestrial Vegetation/Herbaceous | 28.45 | ||
Natural Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Evergreen | 0.00 | ||
Natural Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Deciduous | 0.37 | ||
Natural Terrestrial Vegetation/(Trees/Shrubs)Needleleaved.Evergreen | 0.92 | ||
Natural Terrestrial Vegetation/Herbaceous.Graminoid (GRASSLANDS) | 62.10 | ||
Artificial Surfaces/BuiltUp | 0.39 | ||
Artificial Surfaces/NonBuiltUp.ExtractionSites | 0.33 | ||
Artificial or Natural Waterbodies/Water | 0.00 | ||
Burn Area | 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantino, C.; Aquilino, M.; Labadessa, R.; Adamo, M. Time Series of Land Cover Mappings Can Allow the Evaluation of Grassland Protection Actions Estimated by Sustainable Development Goal 15.1.2 Indicator: The Case of Murgia Alta Protected Area. Remote Sens. 2023, 15, 505. https://doi.org/10.3390/rs15020505
Tarantino C, Aquilino M, Labadessa R, Adamo M. Time Series of Land Cover Mappings Can Allow the Evaluation of Grassland Protection Actions Estimated by Sustainable Development Goal 15.1.2 Indicator: The Case of Murgia Alta Protected Area. Remote Sensing. 2023; 15(2):505. https://doi.org/10.3390/rs15020505
Chicago/Turabian StyleTarantino, Cristina, Mariella Aquilino, Rocco Labadessa, and Maria Adamo. 2023. "Time Series of Land Cover Mappings Can Allow the Evaluation of Grassland Protection Actions Estimated by Sustainable Development Goal 15.1.2 Indicator: The Case of Murgia Alta Protected Area" Remote Sensing 15, no. 2: 505. https://doi.org/10.3390/rs15020505
APA StyleTarantino, C., Aquilino, M., Labadessa, R., & Adamo, M. (2023). Time Series of Land Cover Mappings Can Allow the Evaluation of Grassland Protection Actions Estimated by Sustainable Development Goal 15.1.2 Indicator: The Case of Murgia Alta Protected Area. Remote Sensing, 15(2), 505. https://doi.org/10.3390/rs15020505