Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Data Source
2.2.2. Data Preprocessing
2.3. Method
2.3.1. SDNF
2.3.2. Expand Training Samples
2.3.3. Model Parameter Setting and Training
2.3.4. Comparison Method
2.3.5. Accuracy Assessment
3. Results
3.1. Sample Size
3.2. Training Loss and Elapsed Time
3.3. Superpixel Segmentation
3.4. Model Accuracy
3.5. Classification Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Endreny, T.A. Strategically Growing the Urban Forest Will Improve Our World. Nat. Commun. 2018, 9, 10–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ucar, Z.; Bettinger, P.; Merry, K.; Siry, J.; Bowker, J.M.; Akbulut, R. A Comparison of Two Sampling Approaches for Assessing the Urban Forest Canopy Cover from Aerial Photography. Urban For. Urban Green. 2016, 16, 221–230. [Google Scholar] [CrossRef]
- The State Forestry Administration of the People’s Republic of China. National Forest City Evaluation Indicators; Urban Forestry in China: Beijing, China, 2007; Volume 5, p. 2. [Google Scholar]
- Jia, B.Q.; Liu, X.P. Canopy Coverage Characteristics and Landscape Ecological Changes in the First Green Isolation Area in Beijing; Scientia Silvae Sinicae: Beijing, China, 2017; Volume 53, p. 10. [Google Scholar]
- Krajter Ostoić, S.; Salbitano, F.; Borelli, S.; Verlič, A. Urban Forest Research in the Mediterranean: A Systematic Review. Urban For. Urban Green. 2018, 31, 185–196. [Google Scholar] [CrossRef]
- Erker, T.; Wang, L.; Lorentz, L.; Stoltman, A.; Townsend, P.A. A Statewide Urban Tree Canopy Mapping Method. Remote Sens. Environ. 2019, 229, 148–158. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban Tree Species Mapping Using Hyperspectral and Lidar Data Fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Mi, L.; Chen, Z. Superpixel-Enhanced Deep Neural Forest for Remote Sensing Image Semantic Segmentation. ISPRS J. Photogramm. Remote Sens. 2020, 159, 140–152. [Google Scholar] [CrossRef]
- Kuffer, M.; Barros, J.; Sliuzas, R.V. The Development of a Morphological Unplanned Settlement Index Using Very-High-Resolution (VHR) Imagery. Comput. Environ. Urban Syst. 2014, 48, 138–152. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.F.; Qiu, E.F.; Zhang, Z.Y.; Xi, L. Gradient change of population diversity of woody plants in the urban riverbank forest of Beijing. Sciatica Silvia Sin. 2020, 56, 198–206. [Google Scholar]
- Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, W. Superpixel-Based Classification with an Adaptive Number of Classes for Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 907–924. [Google Scholar] [CrossRef]
- Ren, C.Y.; Reid, I. gSLIC: A Real-Time Implementation of SLIC Superpixel Segmentation; University of Oxford, Department of Engineering: Oxford, UK, 2011; pp. 1–6. [Google Scholar]
- Wei, J.; Huang, W.; Li, Z.; Sun, L.; Zhu, X.; Yuan, Q.; Liu, L.; Cribb, M. Cloud Detection for Landsat Imagery by Combining the Random Forest and Superpixels Extracted via Energy-Driven Sampling Segmentation Approaches. Remote Sens. Environ. 2020, 248, 112005. [Google Scholar] [CrossRef]
- Huang, X.; Cao, Y.; Li, J. An Automatic Change Detection Method for Monitoring Newly Constructed Building Areas Using Time-Series Multi-View High-Resolution Optical Satellite Images. Remote Sens. Environ. 2020, 244, 111802. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Zhang, C.; Zhou, Q.; Wang, S. Remote Sensing of Environment Cross-Scale Sensing of Field-Level Crop Residue Cover: Integrating Field Photos, Airborne Hyperspectral Imaging, and Satellite Data. Remote Sens. Environ. 2023, 285, 113366. [Google Scholar] [CrossRef]
- Aloysius, N.; Geetha, M. A Review on Deep Convolutional Neural Networks. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP 2017), Chennai, India, 6–8 April 2017; pp. 588–592. [Google Scholar] [CrossRef]
- Liu, M.; Shi, J.; Li, Z.; Li, C.; Zhu, J.; Liu, S. Towards Better Analysis of Deep Convolutional Neural Networks. IEEE Trans. Vis. Comput. Graph. 2017, 23, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Waldner, F.; Diakogiannis, F.I. Deep Learning on Edge: Extracting Field Boundaries from Satellite Images with a Convolutional Neural Network. Remote Sens. Environ. 2020, 245, 111741. [Google Scholar] [CrossRef]
- Gallwey, J.; Robiati, C.; Coggan, J.; Vogt, D.; Eyre, M. A Sentinel-2 Based Multispectral Convolutional Neural Network for Detecting Artisanal Small-Scale Mining in Ghana: Applying Deep Learning to Shallow Mining. Remote Sens. Environ. 2020, 248, 111970. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, B.; Song, Y. Urban Land-Use Mapping Using a Deep Convolutional Neural Network with High Spatial Resolution Multispectral Remote Sensing Imagery. Remote Sens. Environ. 2018, 214, 73–86. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A Generalized Approach Based on Convolutional Neural Networks for Large Area Cropland Mapping at Very High Resolution. Remote Sens. Environ. 2020, 247, 111912. [Google Scholar] [CrossRef]
- Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. An Object-Based Convolutional Neural Network (OCNN) for Urban Land Use Classification. Remote Sens. Environ. 2018, 216, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Persello, C.; Tolpekin, V.A.; Bergado, J.R.; de By, R.A. Delineation of Agricultural Fields in Smallholder Farms from Satellite Images Using Fully Convolutional Networks and Combinatorial Grouping. Remote Sens. Environ. 2019, 231, 111253. [Google Scholar] [CrossRef]
- Wang, J.; Ma, A.; Zhong, Y.; Zheng, Z.; Zhang, L. Cross-Sensor Domain Adaptation for High Spatial Resolution Urban Land-Cover Mapping: From Airborne to Spaceborne Imagery. Remote Sens. Environ. 2022, 277, 113058. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, X. A Deep Learning Method for Building Height Estimation Using High-Resolution Multi-View Imagery over Urban Areas: A Case Study of 42 Chinese Cities. Remote Sens. Environ. 2021, 264, 112590. [Google Scholar] [CrossRef]
- Kontschieder, P.; Fiterau, M.; Criminisi, A.; Bulo, S.R. Deep neural decision forests. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1467–1475. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.K.; Liu, H.; Lin, C.X.; Zhao, F.; Jiang, X.; Zhang, Y.T. Study on target detection of mangrove single tree based on improved YOLOv5. Adv. Lasers Optoelectron. 2022, 29, 1828003. [Google Scholar]
- Al-Surf, M.; Balabel, A.; Alwetaishi, M.; Abdelhafiz, A.; Issa, U.; Sharaky, I.; Shamseldin, A.; Al-Harthi, M. Stakeholder’s Perspective on Green Building Rating Systems in Saudi Arabia: The Case of LEED, Mostadam, and the SDGS. Sustainability 2021, 13, 8463. [Google Scholar] [CrossRef]
- Parnell, S.; Walawege, R. Sub-Saharan African Urbanisation and Global Environmental Change. Glob. Environ. Chang. 2011, 21, S12–S20. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing Street-Level Urban Greenery Using Google Street View and a Modified Green View Index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Baines, O.; Wilkes, P.; Disney, M. Quantifying Urban Forest Structure with Open-Access Remote Sensing Data Sets. Urban For. Urban Green. 2020, 50, 126653. [Google Scholar] [CrossRef]
ID | Acquisition Date | Center Longitude and Latitude | Scene Identifier | Senor | Spatial Resolution (Multispectral and Panchromatic) |
---|---|---|---|---|---|
1 | 2021/11/25 | E118.7_N25.1 | 9600277 | PMS 1 | 4 m and 1 m |
2 | 2021/11/25 | E118.6_N24.9 | 9600278 | PMS 1 | 4 m and 1 m |
3 | 2021/11/30 | E119.1_N25.1 | 9617729 | PMS 1 | 4 m and 1 m |
4 | 2021/11/30 | E119.1_N24.9 | 9617730 | PMS 1 | 4 m and 1 m |
5 | 2021/11/30 | E119.0_N24.8 | 9617731 | PMS 1 | 4 m and 1 m |
6 | 2021/11/25 | E118.9_N25.1 | 9600565 | PMS 2 | 4 m and 1 m |
7 | 2021/11/25 | E118.8_N24.9 | 9600566 | PMS 2 | 4 m and 1 m |
Model | Accuracy Assessment | ||
---|---|---|---|
F1 | IoU | OA | |
RF | 0.78 | 0.80 | 0.79 |
SDNF | 0.83 | 0.92 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, H.; Cui, Z.; Lei, K.; Zuo, Y.; Wang, J.; Hu, X.; Qiu, H. Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection. Remote Sens. 2023, 15, 519. https://doi.org/10.3390/rs15020519
Liu Y, Zhang H, Cui Z, Lei K, Zuo Y, Wang J, Hu X, Qiu H. Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection. Remote Sensing. 2023; 15(2):519. https://doi.org/10.3390/rs15020519
Chicago/Turabian StyleLiu, Yang, Huaiqing Zhang, Zeyu Cui, Kexin Lei, Yuanqing Zuo, Jiansen Wang, Xingtao Hu, and Hanqing Qiu. 2023. "Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection" Remote Sensing 15, no. 2: 519. https://doi.org/10.3390/rs15020519
APA StyleLiu, Y., Zhang, H., Cui, Z., Lei, K., Zuo, Y., Wang, J., Hu, X., & Qiu, H. (2023). Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection. Remote Sensing, 15(2), 519. https://doi.org/10.3390/rs15020519