A Single-Site Vehicle Positioning Method in the Rectangular Tunnel Environment
Abstract
:1. Introduction
- A novel single-site vehicle localization approach for the rectangular tunnel environment is proposed;
- The Cramer–Rao Lower Bound (CRLB) of joint TOA and DOA localization method is derived;
- The localization performance of the single-site vehicle localization method with and without filter under LOS and NLOS conditions are compared and analyzed.
2. Establishment of Virtual Stations
3. Vehicle Localization Theory
3.1. Localization Methods in Different Scenarios
3.1.1. Vehicle Localization in LOS Scenarios
3.1.2. Vehicle Localization in NLOS Scenarios
3.2. Joint TOA and DOA Vehicle Localization
3.3. Cramer-Rao Lower Bound
4. The Positioning Algorithm
4.1. TSWLS
4.2. The Positioning Algorithm Based on UPF
4.2.1. System Model
4.2.2. UPF
5. Simulation Results
5.1. NLOS Scenarios
5.1.1. Straight Line Trajectory
5.1.2. Curved Trajectory
5.2. LOS Scenarios
5.2.1. Straight Line Trajectory
5.2.2. Curved Trajectory
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of CRLB for the Joint TOA and DOA Positioning
References
- Golestan, K.; Sattar, F.; Karray, F.; Kamel, M.; Seifzadeh, S. Localization in vehicular ad hoc networks using data fusion and V2V communication. Comput. Commun. 2015, 71, 61–72. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, W.; Rashdan, I. V2V channel modeling at 5.2 GHz for highway environment. China Commun. 2022, 19, 112–128. [Google Scholar] [CrossRef]
- Lee, M.; Atkison, T. VANET applications: Past, present, and future. Veh. Commun. 2021, 28, 100310–100355. [Google Scholar] [CrossRef]
- Mokhtar, B.; Azab, M. Survey on security issues in vehicular ad hoc networks. Alex. Eng. J. 2015, 54, 1115–1126. [Google Scholar] [CrossRef] [Green Version]
- Toor, Y.; Muhlethaler, P.; Laouiti, A.; De La Fortelle, A. Vehicle ad hoc networks: Applications and related technical issues. IEEE Commun. Surv. Tutor. 2008, 10, 74–88. [Google Scholar] [CrossRef]
- Balico, L.N.; Loureiro, A.A.; Nakamura, E.F.; Barreto, R.S.; Pazzi, R.W.; Oliveira, H.A. Localization prediction in vehicular ad hoc networks. IEEE Commun. Surv. Tutor. 2018, 20, 2784–2803. [Google Scholar] [CrossRef]
- Günay, F.B.; Öztürk, E.; Çavdar, T.; Hanay, Y.S. Vehicular ad hoc network (VANET) localization techniques: A survey. Arch. Comput. Methods Eng. 2021, 28, 3001–3033. [Google Scholar] [CrossRef]
- Drawil, N.M.; Basir, O. Intervehicle-communication-assisted localization. IEEE Trans. Intell. Transp. Syst. 2010, 11, 678–691. [Google Scholar] [CrossRef]
- Ghaleb, F.A.; Zainal, A.; Rassam, M.A.; Abraham, A. Improved vehicle positioning algorithm using enhanced innovation-based adaptive Kalman filter. Pervasive Mob. Comput. 2017, 40, 139–155. [Google Scholar] [CrossRef]
- Rohani, M.; Gingras, D.; Vigneron, V.; Gruyer, D. A new decentralized Bayesian approach for cooperative vehicle localization based on fusion of GPS and VANET based inter-vehicle distance measurement. IEEE Intell. Transp. Syst. Mag. 2015, 7, 85–95. [Google Scholar] [CrossRef]
- Abumansoor, O.; Boukerche, A. A secure cooperative approach for nonline-of-sight location verification in VANET. IEEE Trans. Veh. Technol. 2011, 61, 275–285. [Google Scholar] [CrossRef]
- Boukerche, A.; Oliveira, H.A.; Nakamura, E.F.; Loureiro, A.A. Vehicular ad hoc networks: A new challenge for localization-based systems. Comput. Commun. 2008, 31, 2838–2849. [Google Scholar] [CrossRef]
- Qureshi, K.N.; Abdullah, A.H. Localization-based system challenges in vehicular ad hoc networks: Survey. Smart Comput. Rev. 2014, 4, 515–528. [Google Scholar]
- Fang, F.; Ding, Z. High precision positioning and accident detection system for vehicles in traffic tunnel. In Proceedings of the 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT), Harbin, China, 20–22 January 2019; pp. 419–425. [Google Scholar]
- Ling, J.; Wang, L.; Ji, H.; Xie, H.; Ding, J.; Dai, Q. UWB-based real-time continuous positioning system in NLOS tunnel environment. In Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Zhengzhou, China, 18–20 October 2018; pp. 142–1424. [Google Scholar]
- Cypriani, M.; Delisle, G.; Hakem, N. Wi-Fi-based positioning in underground mine tunnels. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Montbeliard, France, 28–31 October 2013; pp. 1–7. [Google Scholar]
- Kim, K.; Im, J.; Jee, G. Tunnel facility based vehicle localization in highway tunnel using 3D LIDAR. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17575–17583. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, X.; Cai, G.; Wang, G.; Guo, S.; Liang, K. Tunnel vehicle RSSI positioning algorithm based on LMLF model. In Proceedings of the 2019 4th International Conference on Cloud Computing and Internet of Things (CCIOT), Changchun, China, 6–7 December 2019; pp. 29–32. [Google Scholar]
- Agarwal, Y.; Jain, K.; Kumar, S.; Bhardwaj, G.N. TLST: Time of arrival based localization and smart tunnel concept in VANETs. In Proceedings of the 2016 3rd International Conference on Signal Processing and Integrated Networks (spin), Noida, India, 11–12 February 2016; pp. 763–768. [Google Scholar]
- Savic, V.; Wymeersch, H.; Larsson, E.G. Simultaneous sensor localization and target tracking in mine tunnels. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 1427–1433. [Google Scholar]
- Zhang, L.C.; Yu, T.T.; Wang, M. Research on Vehicles Position Evaluation Algorithm of Highway Tunnel. In Proceedings of the Advanced Materials Research; Trans Tech Publ.: Zurich, Switzerland, 2013; Volume 718, pp. 1618–1623. [Google Scholar]
- Yan, T.; Zhang, W.; Wang, G.; Zhang, Y. GOT: Grid-based on-road localization through inter-vehicle collaboration. In Proceedings of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–22 October 2011; pp. 13–18. [Google Scholar]
- Shin, B.; Lee, J.H.; Yu, C.; Kyung, H.; Lee, T. Magnetic Field-Based Vehicle Positioning System in Long Tunnel Environment. Appl. Sci. 2021, 11, 11641. [Google Scholar] [CrossRef]
- Song, X.; Li, X.; Tang, W.; Zhang, W.; Li, B. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors. Sensors 2014, 14, 23095–23118. [Google Scholar] [CrossRef] [Green Version]
- Hoang, G.M.; Denis, B.; Härri, J.; Slock, D.T. Robust data fusion for cooperative vehicular localization in tunnels. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1372–1377. [Google Scholar]
- Halili, R.; BniLam, N.; Yusuf, M.; Tanghe, E.; Joseph, W.; Weyn, M.; Berkvens, R. Vehicle Localization Using Doppler Shift and Time of Arrival Measurements in a Tunnel Environment. Sensors 2022, 22, 847. [Google Scholar] [CrossRef]
- Mageid, S.A. Connectivity based positioning system for underground vehicular ad hoc networks. Int. J. Comput. Netw. Appl. 2017, 4, 1–14. [Google Scholar] [CrossRef]
- Ulmschneider, M.; Gentner, C. Multipath assisted positioning for pedestrians using LTE signals. In Proceedings of the 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, GA, USA, 11–14 April 2016; pp. 386–392. [Google Scholar]
- Gentner, C.; Jost, T.; Wang, W.; Zhang, S.; Dammann, A.; Fiebig, U.C. Multipath assisted positioning with simultaneous localization and mapping. IEEE Trans. Wirel. Commun. 2016, 15, 6104–6117. [Google Scholar] [CrossRef] [Green Version]
- Karásek, R.; Gentner, C. Stochastic data association for multipath assisted positioning using a single transmitter. IEEE Access 2020, 8, 46735–46752. [Google Scholar] [CrossRef]
- Ulmschneider, M.; Zhang, S.; Gentner, C.; Dammann, A. Multipath assisted positioning with transmitter visibility information. IEEE Access 2020, 8, 155210–155223. [Google Scholar] [CrossRef]
- Ulmschneider, M.; Gentner, C.; Jost, T.; Dammann, A. Multiple hypothesis data association for multipath-assisted positioning. In Proceedings of the 2017 14th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 25–26 October 2017; pp. 1–6. [Google Scholar]
- Song, X.; Li, X.; Tang, W.; Zhang, W. RFID/in-vehicle sensors-integrated vehicle positioning strategy utilising LSSVM and federated UKF in a tunnel. J. Navig. 2016, 69, 845–868. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Zhou, C.; Yang, S.H.; Wang, F. A distributed newton iteration based localization scheme in underground tunnels. In Proceedings of the 2012 UKACC International Conference on Control, Cardiff, UK, 3–5 September 2012; pp. 851–856. [Google Scholar]
- Li, C.R.; Xie, J.L.; Yang, L.L. Angle offset-assisted positioning of railway vehicles in tunnel environments. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar]
- Wang, B.; Sun, D.; Zu, H.; Wu, C.; Zhang, D.; Chen, X. Fusion Positioning System Based on IMU and Roadside LiDAR in Tunnel for C-V2X Use. In Proceedings of the 3rd International Forum on Connected Automated Vehicle Highway System, Technical report. Jinan, China, 25 October 2022; 2020. [Google Scholar]
- Kong, X.; Li, X.; Song, X.; Tian, Y.; Kong, D. An accurate and reliable positioning methodology for land vehicles in tunnels based on UWB/INS integration. Meas. Sci. Technol. 2022, 33, 1–10. [Google Scholar] [CrossRef]
- Islam, A.; Hossain, M.A.; Le, N.T.; Hong, C.H.; Nguyen, T.; Jang, Y.M. Precise Localization in Tunnel Environment using Visible Light Communication. In Proceedings of the 26th Joint Conference on Communications and Information, Lisbon, Portugal, 19–25 August 2016; pp. 26–28. [Google Scholar]
- Kim, B.W.; Jung, S.Y. Vehicle positioning scheme using V2V and V2I visible light communications. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- de Ponte Müller, F. Survey on ranging sensors and cooperative techniques for relative positioning of vehicles. Sensors 2017, 17, 271. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.; Wax, M. Single-site localization via maximum discrimination multipath fingerprinting. IEEE Trans. Signal Process. 2014, 62, 1718–1728. [Google Scholar] [CrossRef]
- Jost, T.; Wang, W.; Fiebig, U.C.; Perez-Fontan, F. Detection and tracking of mobile propagation channel paths. IEEE Trans. Antennas Propag. 2012, 60, 4875–4883. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, W.; Jost, T.; Peng, P.; Sun, Y. An ARMA-filter based SAGE algorithm for ranging in diffuse scattering environment. IEEE Trans. Veh. Technol. 2022, 71, 3361–3366. [Google Scholar] [CrossRef]
- Liang, J.; He, J.; Yu, W.; Truong, T.K. Single-Site 3-D Positioning in Multipath Environments Using DOA-Delay Measurements. IEEE Commun. Lett. 2021, 25, 2559–2563. [Google Scholar] [CrossRef]
- Liu, D.; Liu, K.; Ma, Y.; Yu, J. Joint TOA and DOA Localization in Indoor Environment Using Virtual Stations. IEEE Commun. Lett. 2014, 18, 1423–1426. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, W.; Yan, F.; Shen, L. A single-site positioning method based on TOA and DOA estimation using virtual stations in NLOS environment. China Commun. 2019, 16, 146–159. [Google Scholar]
- Zhang, R.; Chen, G.; Zeng, Q.; Shen, L. Single-Site Positioning Method Based on High-Resolution Estimation in VANET Localization. IEEE Access 2018, 6, 54674–54682. [Google Scholar] [CrossRef]
- Youn, J.; Jo, J.; Kim, D.K. Study on Crammer-Rao Lower Bound of Angle-of-Arrival Position Estimation for Cooperative Vehicle-to-Vehicle (V2V) Communication. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 17–19 October 2018; pp. 1–4. [Google Scholar]
- Kang, Y.; Wang, Q.; Wang, J.; Chen, R. A high-accuracy TOA-based localization method without time synchronization in a three-dimensional space. IEEE Trans. Ind. Inform. 2018, 15, 173–182. [Google Scholar] [CrossRef]
- Rui, Y.; Chen, Y. Better proposal distributions: Object tracking using unscented particle filter. In Proceedings of the Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 2, pp. 786–793. [Google Scholar]
- Van Der Merwe, R.; Doucet, A.; De Freitas, N.; Wan, E. The Unscented Particle Filter; Technical Report CUED/F-INFENG/TR 380; Cambridge University Engineering Department: Cambridge, UK, 2000. [Google Scholar]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar]
- Wu, H.; Liang, L.; Mei, X.; Zhang, Y. A convex optimization approach for NLOS error mitigation in TOA-based localization. IEEE Signal Process. Lett. 2022, 29, 677–681. [Google Scholar] [CrossRef]
- Seow, C.K.; Tan, S.Y. Non-line-of-sight localization in multipath environments. IEEE Trans. Mob. Comput. 2008, 7, 647–660. [Google Scholar] [CrossRef]
Reference | Method | Accuracy |
---|---|---|
[16] | WiFi, Open wireless positioning method | Less than 20 m |
[24] | RFID, RSS, LMS, interactive multiple models, strong tracking EKF | Max: 2.98 m, RMS: 2.19 m |
[33] | RFID, RSS, DR, least square support vector machine, federated UKF | 2.91–4 m |
[34] | Newton iteration location estimation, RSS, WSN | Less than 3 m |
[35] | WSN, angle offset-assisted positioning | NA |
[36] | Roadside LIDAR, inertial measurement unit | 0.49 m |
[37] | UWB, INS, EKF, residual weighting, factor graph model | 0.5397 m |
[14] | UWB | 0.15–0.18 m |
[20] | UWB, TOA | NA |
[19] | TOA, time difference of arrival, onboard navigation unit, localization based on clustering in vehicular clouds | NA |
[38,39] | Visible light communication, V2V, V2I | 1 m |
[25] | V2I, RSU, UWB, cooperative localization | 0.1–2 m |
[27] | V2V, V2I | 9.16–14.5 m |
[15] | UWB, exceptional Value Filtering, Greedy-based clustering algorithm | NA |
[17] | 3D LIDAR, EKF | Less than 0.2 m |
[26] | Doppler shift, TOA, EKF | Max: 35.88 m, Mean: 20.3 m |
[18] | RSSI, linear modified log function | 1.95 m |
[21] | Cloud reasoning model | Less than 1 m |
[22] | A light-weight grid-based calculation mechanism | Less than 14 m |
[23] | The magnetic sensor of a smartphone, magnetic sensor calibration method | 9.33–30.38 m |
Algorithm | , m | , m | , m | |||
---|---|---|---|---|---|---|
Mean [m] | Variance | Mean [m] | Variance | Mean [m] | Variance | |
TSWLS | 0.1455 | 0.0059 | 0.1991 | 0.0067 | 0.3330 | 0.0118 |
EKF | 0.1004 | 0.0138 | 0.1210 | 0.0158 | 0.1765 | 0.0212 |
UKF | 0.0896 | 0.0108 | 0.1129 | 0.0126 | 0.1596 | 0.0149 |
UPF | 0.0110 | 0.0057 | 0.0432 | 0.0185 | 0.0742 | 0.0316 |
Algorithm | , m | , m | , m | |||
---|---|---|---|---|---|---|
Mean [m] | Variance | Mean [m] | Variance | Mean [m] | Variance | |
TSWLS | 0.1341 | 0.0043 | 0.1987 | 0.0065 | 0.2675 | 0.0081 |
EKF | 0.0882 | 0.0129 | 0.1137 | 0.0141 | 0.1699 | 0.0190 |
UKF | 0.0797 | 0.0103 | 0.1018 | 0.0136 | 0.1533 | 0.0167 |
UPF | 0.0101 | 0.0054 | 0.0241 | 0.0160 | 0.0418 | 0.0221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Wang, W.; Peng, P. A Single-Site Vehicle Positioning Method in the Rectangular Tunnel Environment. Remote Sens. 2023, 15, 527. https://doi.org/10.3390/rs15020527
Jiang S, Wang W, Peng P. A Single-Site Vehicle Positioning Method in the Rectangular Tunnel Environment. Remote Sensing. 2023; 15(2):527. https://doi.org/10.3390/rs15020527
Chicago/Turabian StyleJiang, Suying, Wei Wang, and Peng Peng. 2023. "A Single-Site Vehicle Positioning Method in the Rectangular Tunnel Environment" Remote Sensing 15, no. 2: 527. https://doi.org/10.3390/rs15020527
APA StyleJiang, S., Wang, W., & Peng, P. (2023). A Single-Site Vehicle Positioning Method in the Rectangular Tunnel Environment. Remote Sensing, 15(2), 527. https://doi.org/10.3390/rs15020527