A Tropical Cyclone or Typhoon as an Element of the Earth–Atmosphere–Ionosphere–Magnetosphere System: Theory, Simulations, and Observations
Abstract
:1. Introduction
2. Geometric Parameters of Tropical Cyclones (Typhoons)
3. Hydrodynamic Parameters of Tropical Cyclones (Typhoons)
4. General Information on Couplings in the Ocean–Land–Atmosphere Subsystem
5. Energetics of the Ocean–Atmosphere Subsystem
5.1. Oceanic Heat Loss
5.2. TC Kinetic Energy
5.3. Power of Water Vapor Condensation
5.4. TC Internal Energy
5.5. Power That TCs (Typhoons) Produce by Kinetic Frictional Forces between Air and the Oceanic Surface
- , k4 ≈ 0.11.
- From Equation (24), Pf ≈ 2.5 × 1013 W at = 60 m/s.
5.6. TC (Typhoon) Kinetic Energy Balance Equation
Stored kinetic energy of the air rotational motion | = 2 × 1018 J |
Kinetic energy of translational motion at a speed of = 7.5 m/s | Ek2 = 0.4 × 1018 J |
Air internal energy increase (without accounting for advection and thermal advection) | ET = 1019 J |
Power of water vapor condensation | Pc = 1.5 × 1014 W |
Condensation power flux | Πc ≈ 940 W/m2 |
Oceanic internal energy lost per unit time | PT1 = 15.2 × 1014 W |
Oceanic internal energy lost over 6 days | Q1 = 7.9 × 1020 J |
Power for oceanic water evaporation | PT2 ≈ 11.4 × 1014 W |
Power for air heating | PT3 ≈ 3.8 × 1014 W |
Power that cyclone produces by frictional forces between air and the oceanic surface | Pf ≈ 2.5 × 1013 W |
Energy loss rate | η ≈ 3.5 × 10−2 |
Water vapor density | ρ2 ≈ 2.4 × 10−2 kg/m3 |
Air heating (without accounting for heat losses due to cold air advection and thermal advection) | Δt2 ≈ 10 °C |
Real air heating | Δt2 ≈ 3–4 °C |
Cooled water layer thickness | h1 = 80 m |
Surface area of cooled water | 2r1L ≈ (0.5–2) × 1012 m2 |
Length of cooled water surface | L = τc ≈ 3000–5000 km |
Duration of cooling (cyclone lifetime) | τc = 5–7 days |
Mean value of water temperature decrease in the oceanic surface layer | Δt1 = 2–3 °C |
Period of water temperature and air speed oscillations | T = 15 days |
Characteristic time constant of the oscillation damping mentioned above | γ−1 = 5 days |
6. Coupling of the Ocean and the Tropical Cyclone (Typhoon)
6.1. Governing Relations
6.2. Steady-State Solutions
6.3. Investigation of Steady-State Stability
7. General Information on the Role That Tropical Cyclones (Typhoons) Play in Couplings in the Ocean–Atmosphere–Ionosphere–Magnetosphere System
8. Acoustic–Gravity Wave Generation by the Ocean–Tropical Cyclone (Typhoon) Subsystem
8.1. AGW Amplitude and Spectrum
8.2. IGW Prevalent Periods
8.3. Infrasound Generation by Oceanic Waves
9. Tropical Cyclone (Typhoon) Effect on the Upper Atmosphere
9.1. Upper Atmospheric Heating by IGWs
9.2. Heating the Upper Atmosphere by Acoustic Waves
9.3. Geomagnetic Effect of IGWs
9.4. Geomagnetic Effect of Acoustic Waves
10. Generation of Electromagnetic Radiation by Tropical Cyclones (Typhoons): Impact on the Magnetosphere and Radiation Belts
11. Generation of Quasi-Steady Electric Fields: Impact on the Magnetosphere and Radiation Belts
11.1. Oceanic Aerosols
11.2. Electric Current in the Atmosphere
11.3. Generation of Electric Fields
11.4. Generation of Magnetic Fields
11.5. Impact on Energetic Particles
12. Observations
12.1. Ionospheric Disturbances That Accompanied the Super Typhoon Kong-Rey Event of September–October 2018 over China
12.2. Ionospheric Disturbances That Accompanied the Super Typhoon Lekima Event of 4–12 August 2019
12.2.1. Doppler Spectrum Variations
12.2.2. Amplitude Effect
12.3. Ionospheric Disturbances That Accompanied Typhoon Activity in the Vicinity of China in September 2019
Ionospheric Response to Typhoons
12.4. Ionospheric Disturbances That Accompanied the Super Typhoon Hagibis Event of 6–13 October 2019
13. Discussion
14. Conclusions
- The premise has been validated that a tropical cyclone (typhoon, hurricane), one of the most powerful large-scale formations systematically arising in the atmosphere, is an element of the ocean–atmosphere–ionosphere–magnetosphere system. The TC plays a crucial role with regard to global-scale mass and energy exchange in this system.
- The study of this system encompasses a broad spectrum of physical phenomena occurring and processes operating within the system components, as well as the mechanisms for their interactions. The problem under discussion is interdisciplinary. It ranges from different Earth sciences to geospace sciences, which comprise the physics of the ocean, meteorology, the physics of the Earth’s atmospheric and space environment, geomagnetism, etc.
- The foundations of a schematic model for the main processes operating in the ocean–atmosphere–ionosphere–magnetosphere system have been built.
- The subsystems and the system as a whole demonstrate nonlinearity. This produces nontrivial properties of the system such as the excitation of instabilities, the emergence of self-organization, trigger mechanism working, etc.
- The main mechanisms for coupling the subsystems are indicated. The feedback and coupling processes operate between the subsystems. It is important that these processes are characterized by significant energetics, which leads to the nonlinearity of the main physical processes.
- A tropical cyclone (typhoon) impacts the upper atmosphere, ionosphere, and the magnetosphere via at least three channels, viz., acoustic–gravity, electromagnetic, and electrical ones, which are associated with the generation of waves and fields of the respective nature.
- The schematic model presented above will be refined and improved in further research. However, it is already clear that satellite observations of variations in a number of atmospheric and geospace parameters are to expand the possibility of early warning of TCs (hurricanes, typhoons).
- Observations of the ionospheric responses to a few unique typhoons made with the multifrequency multiple path software-defined radio system at oblique incidence verified the definitive role that IGWs and infrasound play in forming atmospheric–ionospheric disturbances. These observations have demonstrated that typhoon-induced disturbances can significantly affect the HF radio wave characteristics.
- The Harbin Engineering University multifrequency multiple path coherent software-defined radio system for probing the ionosphere at oblique incidence was used to detect the ionospheric effects over the People’s Republic of China during the 27 September 2018 to 13 October 2019 period encompassing the super typhoon event. The movement of the super typhoon was accompanied by significant variations in radio wave characteristics in the 5–10 MHz band.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chernogor, L.F. The tropical cyclone as an element of the Earth—Atmosphere—Ionosphere—Magnetosphere system. Space Sci. Technol. 2006, 12, 16–36. [Google Scholar] [CrossRef]
- Chernogor, L.F. On Nonlinearity in Nature and Science: Monograph; V.N. Karazin Kharkiv National University Publ.: Kharkiv, Russia, 2008; 528p. (In Russian) [Google Scholar]
- Chernogor, L.F. The Earth–atmosphere–geospace system: Main properties and processes. Int. J. Remote Sens. 2011, 32, 3199–3218. [Google Scholar] [CrossRef]
- Chernogor, L.F.; Rozumenko, V.T. Earth—Atmosphere—Geospace as an Open Nonlinear Dynamical System. Radio Phys. Radio Astron. 2008, 13, 120–137. Available online: http://rpra-journal.org.ua/index.php/ra/article/view/563 (accessed on 7 October 2023).
- Isaev, N.V.; Sorokin, V.M.; Chmyrev, V.M.; Serebryakova, O.N.; Yashchenko, A.K. Disturbance of the Electric Field in the Ionosphere by Sea Storms and Typhoons. Cosm. Res. 2002, 40, 547–553. [Google Scholar] [CrossRef]
- Isaev, N.V.; Sorokin, V.M.; Chmyrev, V.M.; Serebryakova, O.N. Ionospheric electric fields related to sea storms and typhoons. Geomagn. Aeron. 2002, 42, 638–643. [Google Scholar]
- Kuo, C.L.; Huba, J.D.; Joyce, G.; Lee, L.C. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. 2011, 116, A10317. [Google Scholar] [CrossRef]
- Yutsis, V.; Rapoport, Y.; Grimalsky, V.; Grytsai, A.; Ivchenko, V.; Petrishchevskii, S.; Fedorenko, A.; Krivodubskij, V. ULF Activity in the Earth Environment: Penetration of Electric Field from the Near-Ground Source to the Ionosphere under Different Configurations of the Geomagnetic Field. Atmosphere 2021, 12, 801. [Google Scholar] [CrossRef]
- Yaroshevich, M.I.; Ingel, L.K. Tropical Cyclone: An Element of the Ocean-Atmosphere System. Dokl. Earth Sci. 2004, 399, 1245–1248. Available online: https://www.researchgate.net/publication/266535038_Tropical_cyclone_An_element_of_the_ocean-atmosphere_system (accessed on 7 October 2023).
- Chernogor, L.F.; Garmash, K.P.; Guo, Q.; Rozumenko, V.T.; Zheng, Y.; Luo, Y. Supertyphoon Hagibis action in the ionosphere on 6–13 October 2019: Results from multi-frequency multiple path sounding at oblique incidence. Adv. Space Res. 2021, 67, 2439–2469. [Google Scholar] [CrossRef]
- Chernogor, L.F.; Garmash, K.P.; Guo, Q.; Rozumenko, V.T.; Zheng, Y.; Luo, Y. Disturbances in the ionosphere that accompanied typhoon activity in the vicinity of China in September 2019. Radio Sci. 2022, 57, e2022RS007431. [Google Scholar] [CrossRef]
- Zheng, Y.; Chernogor, L.F.; Garmash, K.P.; Guo, Q.; Rozumenko, V.T.; Luo, Y. Disturbances in the ionosphere and distortion of radio wave characteristics that accompanied the super typhoon Lekima event of 4–12 August 2019. J. Geophys. Res. 2022, 127, e2022JA030553. [Google Scholar] [CrossRef]
- Chernogor, L.F.; Garmash, K.P.; Guo, Q.; Rozumenko, V.T.; Zheng, Y. Effects of the super-powerful tropospheric western Pacific phenomenon of September–October 2018 on the ionosphere over China: Results from oblique sounding. Ann. Geophys. 2023, 41, 173–195. [Google Scholar] [CrossRef]
- Chernogor, L.F. Infrasound Effects of Earthquakes and Their Precursors on Parameters of Near-Earth Space. Radio Phys. Radio Astron. 1997, 2, 463–472. (In Russian) [Google Scholar]
- Chernogor, L.F. Energetics of the Processes Occurring on the Earth, in the Atmosphere and Near-Earth Space in Connection with the Project “Early Warning”. Space Sci. Technol. 1999, 5, 38–47. [Google Scholar] [CrossRef]
- Chernogor, L.F. Physics and Ecology of Disasters; V. N. Karazin Kharkiv National University Publ.: Kharkiv, Russia, 2012; 556p. (In Russian) [Google Scholar]
- Prasad, S.S.; Schneck, L.J.; Davies, K. Ionospheric disturbances by severe tropospheric weather storms. J. Atmos. Terr. Phys. 1975, 37, 1357–1363. [Google Scholar] [CrossRef]
- Hung, R.J.; Kuo, J.P. Ionospheric observation of gravity-waves associated with Hurricane Eloise. J. Geophys. 1978, 45, 67–80. Available online: https://journal.geophysicsjournal.com/JofG/article/view/173 (accessed on 7 October 2023).
- Krishnam Raju, D.G.; Rao, M.S.; Rao, B.M.; Jogulu, C.; Rao, C.P.; Ramanadham, R. Infrasonic oscillations in the F2 region associated with severe thunderstorms. J. Geophys. Res. 1981, 86, 5873–5880. [Google Scholar] [CrossRef]
- Boška, J.; Šauli, P. Observations of gravity waves of meteorological origin in the F-region ionosphere. Phys. Chem. Earth 2001, 26, 425–428. [Google Scholar] [CrossRef]
- Chernigovskaya, M.A.; Shpynev, B.G.; Ratovsky, K.G. Meteorological effects of ionospheric disturbances from vertical radio sounding data. J. Atmos. Solar-Terr. Phys. 2015, 136, 235–243. [Google Scholar] [CrossRef]
- Šindelářova, T.; Burešová, D.; Chum, J.; Hruška, F. Doppler observations of infrasonic waves of meteorological origin at ionospheric heights. Adv. Space Res. 2009, 43, 1644–1651. [Google Scholar] [CrossRef]
- Hickey, M.P.; Schubert, G.; Walterscheid, R.L. Acoustic wave heating of the thermosphere. J. Geophys. Res. 2001, 106, 21543–21548. [Google Scholar] [CrossRef]
- Hickey, M.P.; Walterscheid, R.L.; Schubert, G. Gravity wave heating and cooling of the thermosphere: Roles of the sensible heat flux and viscous flux of kinetic energy. J. Geophys. Res. 2011, 116, A12326. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Kshevetskii, S.P. Dynamical and thermal effects of nonsteady nonlinear acoustic-gravity waves propagating from tropospheric sources to the upper atmosphere. Adv. Space Res. 2015, 56, 1833–1843. [Google Scholar] [CrossRef]
- Karpov, I.V.; Kshevetskii, S.P. Numerical study of heating the upper atmosphere by acoustic-gravity waves from local source on the Earth’s surface and influence of this heating on the wave propagation conditions. J. Atmos. Solar-Terr. Phys. 2017, 164, 89–96. [Google Scholar] [CrossRef]
- Kuester, M.A.; Alexander, M.J.; Ray, E.A. A model study of gravity waves over Hurricane Humberto (2001). J. Atmos. Sci. 2008, 65, 3231–3246. [Google Scholar] [CrossRef]
- Mikhailova, G.A.; Mikhailov, M.Y.; Kapustina, O.V. ULF–VLF electric fields in the external ionosphere over powerful typhoons in Pacific Ocean. Int. J. Geomag. Aeron. 2000, 2, 153–158. [Google Scholar] [CrossRef]
- Mikhailova, G.A.; Mikhailov, Y.M.; Kapustina, O.V. Variations of ULF-VLF electric fields in the external ionosphere over powerful typhoons in Pacific Ocean. Adv. Space Res. 2002, 30, 2613–2618. [Google Scholar] [CrossRef]
- Nickolaenko, A.P.; Hayakawa, M. Heating of the lower ionosphere electrons by electromagnetic radiation of lightning discharges. Geophys. Res. Lett. 1995, 22, 3015–3018. [Google Scholar] [CrossRef]
- Bortnik, J.; Inan, U.S.; Bell, T.F. Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 1. Methodology. J. Geophys. Res. 2006, 111, A02204. [Google Scholar] [CrossRef]
- Isaev, N.V.; Kostin, V.M.; Belyaev, G.G.; Ovcharenko, O.Y.; Trushkina, E.P. Disturbances of the topside ionosphere caused by typhoons. Geomag. Aeron. 2010, 50, 243–255. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Isaev, N.V.; Yaschenko, A.K.; Chmyrev, V.M.; Hayakawa, M. Strong DC electric field formation in the low latitude ionosphere over typhoons. J. Atmos. Solar-Terr. Phys. 2005, 67, 1269–1279. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Chmyrev, V.M.; Hayakawa, M. A Review on Electrodynamic Influence of Atmospheric Processes to the Ionosphere. Open J. Earthq. Res. 2020, 9, 113–141. [Google Scholar] [CrossRef]
- Pulinets, S.; Davidenko, D. Ionospheric precursors of earthquakes and global electric circuit. Adv. Space Res. 2014, 53, 709–723. [Google Scholar] [CrossRef]
- Okuzawa, T.; Shibata, T.; Ichinose, T.; Takagi, K.; Nagasawa, C.; Nagano, I.; Mambo, M.; Tsutsui, M.; Ogawa, T. Short-period disturbances in the ionosphere observed at the time of typhoons in September 1982 by a network of HF Doppler receivers. J. Geomag. Geoelectr. 1986, 38, 239–266. [Google Scholar] [CrossRef]
- Xiao, Z.; Xiao, S.-G.; Hao, Y.-Q.; Zhang, D.-H. Morphological features of ionospheric response to typhoon. J. Geophys. Res. 2007, 112, A04304. [Google Scholar] [CrossRef]
- Vanina–Dart, L.B.; Pokrovskaya, I.V.; Sharkov, E.A. Studying the interaction between the lower equatorial ionosphere and tropical cyclones according to data of remote and rocket sounding. Izv. Atmos. Ocean. Phys. 2007, 2, 19–27. [Google Scholar]
- Afraimovich, E.L.; Voeykov, S.V.; Ishin, A.B.; Perevalova, N.P.; Ruzhin, Y.Y. Variations in the total electron content during the powerful typhoon of August 5–11, 2006, near the southeastern coast of China. Geomag. Aeron. 2008, 48, 674–679. [Google Scholar] [CrossRef]
- Polyakova, A.S.; Perevalova, N.P. Investigation into impact of tropical cyclones on the ionosphere using GPS sounding and NCEP/NCAR reanalysis data. Adv. Space Res. 2011, 48, 1196–1210. [Google Scholar] [CrossRef]
- Polyakova, A.S.; Perevalova, N.P. Comparative analysis of TEC disturbances over tropical cyclone zones in the north-west Pacific Ocean. Adv. Space Res. 2013, 52, 1416–1426. [Google Scholar] [CrossRef]
- Zakharov, V.I.; Kunitsyn, V.E. Regional features of atmospheric manifestations of tropical cyclones according to ground-based GPS network data. Geomagn. Aeron. 2012, 52, 533–545. [Google Scholar] [CrossRef]
- Zakharov, V.I.; Pilipenko, V.A.; Grushin, V.A.; Khamidullin, A.F. Impact of typhoon Vongfong 2014 on the Ionosphere and Geomagnetic Field According to Swarm Satellite Data: 1. Wave Disturbances of Ionospheric Plasma. Solar-Terr. Phys. 2019, 5, 101–108. [Google Scholar]
- Zakharov, V.I.; Sigachev, P.K. Ionospheric disturbances from tropical cyclones. Adv. Space Res. 2022, 69, 132–141. [Google Scholar] [CrossRef]
- Chou, M.Y.; Lin, C.C.H.; Yue, J.; Tsai, H.F.; Sun, Y.Y.; Liu, J.Y.; Chen, C.H. Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016). Geophys. Res. Let. 2017, 44, 1219–1226. [Google Scholar] [CrossRef]
- Chum, J.; Liu, J.-Y.; Šindelářová, K.; Podolská, T. Infrasound in the ionosphere from earthquakes and typhoons. J. Atmos. Sol.–Terr. Phys. 2018, 171, 72–82. [Google Scholar] [CrossRef]
- Li, W.; Yue, J.; Yang, Y.; Li, Z.; Guo, J.; Pan, Y.; Zhang, K. Analysis of ionospheric disturbances associated with powerful cyclones in East Asia and North America. J. Atmos. Solar-Terr. Phys. 2017, 161, 43–54. [Google Scholar] [CrossRef]
- Li, W.; Yue, J.; Wu, S.; Yang, Y.; Li, Z.; Bi, J.; Zhang, K. Ionospheric responses to typhoons in Australia during 2005–2014 using GNSS and FORMOSAT-3/COSMIC measurements. GPS Solut. 2018, 22, 61. [Google Scholar] [CrossRef]
- Suzuki, S.; Vadas, S.L.; Shiokawa, K.; Otsuka, Y.; Karwamura, S.; Murayama, Y. Typoon-induced concentric airglow structures in the mesopause region. Geophys. Res. Lett. 2013, 40, 5983–5987. [Google Scholar] [CrossRef]
- Yiğit, E.; Knížová, P.K.; Georgieva, K.; Ward, W. A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J. Atmos. Solar-Terr. Phys. 2016, 141, 1–12. [Google Scholar] [CrossRef]
- Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995. Ann. Geophys. 1996, 14, 917–940. [Google Scholar] [CrossRef]
- Kubota, M.; Shiokawa, K.; Ejiri, M.K.; Otsuka, Y.; Ogawa, T.; Sakanoi, T.; Fukunishi, H.; Yamamoto, M.; Fukao, S.; Saito, A. Traveling ionospheric disturbances observed in the OI 630-nm nightglow images over Japan by using a Multipoint Imager Network during the FRONT Campaign. Geophys. Res. Lett. 2000, 27, 4037–4040. [Google Scholar] [CrossRef]
- Shiokawa, K.; Ihara, C.; Otsuka, Y.; Ogawa, T. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res. 2003, 108, 1052. [Google Scholar] [CrossRef]
- Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Ogawa, T. Observation of equatorial nighttime medium-scale traveling ionospheric disturbances in 630-nm airglow images over 7 years. J. Geophys. Res. 2012, 117, A10324. [Google Scholar] [CrossRef]
- Frissell, N.A.; Baker, J.B.H.; Ruohoniemi, J.M.; Gerrard, A.J.; Miller, E.S.; Marini, J.P.; West, M.L.; Bristow, W.A. Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar. J. Geophys. Res. Space Phys. 2014, 119, 7679–7697. [Google Scholar] [CrossRef]
- Paulino, I.; Medeiros, A.F.; Vadas, S.L.; Wrasse, C.M.; Takahashi, H.; Buriti, R.A.; Leite, D.; Filgueira, S.; Bageston, J.V.; Sobral, J.H.A.; et al. Periodic waves in the lower thermosphere observed by OI630 nm airglow images. Ann. Geophys. 2016, 34, 293–301. [Google Scholar] [CrossRef]
- Paulino, I.; Moraes, J.F.; Maranhão, G.L.; Wrasse, C.M.; Buriti, R.A.; Medeiros, A.F.; Paulino, A.R.; Takahashi, H.; Makela, J.J.; Meriwether, J.W.; et al. Intrinsic parameters of periodic waves observed in the OI6300 airglow layer over the Brazilian equatorial region. Ann. Geophys. 2018, 36, 265–273. [Google Scholar] [CrossRef]
- Song, Q.; Ding, F.; Zhang, X.; Liu, H.; Mao, T.; Zhao, X.; Wang, Y. Medium-scale traveling ionospheric disturbances induced by Typhoon Chan-hom over China. J. Geophys. Res. 2019, 124, 2223–2237. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Y.; Wang, J.-S.; Zhang, S.-R.; Lin, C.Y. Tropical cyclone-induced gravity wave perturbations in the upper atmosphere: GITM-R simulations. J. Geophys. Res. 2020, 125, e2019JA027675. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Mao, T.; Wang, J.S.; Chen, Z. The 2D features of tropical cyclone Usagi’s effects on the ionospheric total electron content. Adv. Space Res. 2018, 62, 760–764. [Google Scholar] [CrossRef]
- Wen, Y.; Jin, S. Traveling Ionospheric Disturbances Characteristics during the 2018 Typhoon Maria from GPS Observations. Remote Sens. 2020, 12, 746. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Ren, X.; Zhang, J.; Freeshah, M.; Zhao, Z. Ionospheric disturbances detected during a typhoon based on GNSS phase observations: A case study for typhoon Mangkhut over Hong Kong. Adv. Space Res. 2020, 66, 1743–1753. [Google Scholar] [CrossRef]
- Freeshah, M.; Zhang, X.; Şentürk, E.; Adil, M.A.; Mousa, B.G.; Tariq, A.; Ren, X.; Refaat, M. Analysis of Atmospheric and Ionospheric Variations Due to Impacts of Super Typhoon Mangkhut (1822) in the Northwest Pacific Ocean. Remote Sens. 2021, 13, 661. [Google Scholar] [CrossRef]
- Ke, F.Y.; Qi, X.M.; Wang, Y.; Liu, X.W. Statistics of ionospheric responses to Southeast Asia’s typhoons during 2006-2018 using the rate of change in the TEC index. Adv. Space Res. 2020, 66, 1724–1742. [Google Scholar] [CrossRef]
- Kong, J.; Yao, Y.; Xu, Y.; Kuo, C.; Zhang, L.; Liu, L.; Zhai, C. A clear link connecting the troposphere and ionosphere: Ionospheric reponses to the 2015 Typhoon Dujuan. J. Geod. 2017, 91, 1087–1097. [Google Scholar] [CrossRef]
- Das, B.; Sarkar, S.; Haldar, P.K.; Midya, S.K.; Pal, S. D-region ionospheric disturbances associated with the Extremely Severe Cyclone Fani over North Indian Ocean as observed from two tropical VLF stations. Adv. Space Res. 2021, 67, 75–86. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere-Ocean Dynamics, 1st ed.; Academic Press: New York, NY, USA, 1982; 662p. [Google Scholar]
- Golitsyn, G.S. Statistics and Energetics of Tropical Cyclones. Dokl. Akad. Nauk 1997, 354, 535–538. (In Russian) [Google Scholar]
- Golitsyn, G.S.; Yaroshevich, M.I. Specific features of the recurrence of tropical cyclones versus their energy. Dokl. Akad. Nauk 2000, 372, 544–546. (In Russian) [Google Scholar]
- Matveev, Y.L.; Matveev, L.T. Characteristic Features of the Formation, Development, and Motion of Tropical Cyclones. Izv. Atmos. Ocean. Phys. 2000, 36, 698–705. Available online: https://www.researchgate.net/publication/287447583_Characteristic_features_of_the_formation_development_and_motion_of_tropical_cyclones (accessed on 7 October 2023).
- Khain, A.P.; Sutyrin, G.G. Tropical Cyclones and Their Interaction with the Ocean; Gidrometeoizdat: Leningrad, Russia, 1983; 272p. (In Russian) [Google Scholar]
- Shuleikin, V.V. Calculation of the Development, Motion, and Damping of Tropical Hurricanes and the Major Waves They Create; Gidrometeoizdat: Leningrad, Russia, 1978; 97p. (In Russian) [Google Scholar]
- Inan, U.; Piddyachiy, D.; Peter, W.; Sauvaud, J.; Parrot, M. DEMETER satellite observations of lightning-induced electron precipitation. Geophys. Res. Lett. 2007, 34, L07103. [Google Scholar] [CrossRef]
- Voss, H.D.; Imhof, W.L.; Walt, M.; Mobilia, J.; Gaines, E.E.; Reagan, J.B.; Inan, U.S.; Helliwell, R.A.; Carpenter, D.L.; Katsufrakis, J.P.; et al. Lightning-induced electron precipitation. Nature 1984, 312, 740–742. [Google Scholar] [CrossRef]
- Voss, H.D.; Walt, M.; Imhof, W.L.; Mobilia, J.; Inan, U.S. Satellite observations of lightning-induced electron precipitation. J. Geophys. Res. 1998, 103, 11725–11744. [Google Scholar] [CrossRef]
- Gossard, E.E.; Hooke, W.H. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation; Elsevier Scientific Publ. Co.: Amsterdam, The Netherlands, 1975; 472p. [Google Scholar]
- Grigor’ev, G.I. Acoustic-gravity waves in the earth’s atmosphere (review). Radiophys. Quantum Electron. 1999, 42, 1–21. [Google Scholar] [CrossRef]
- Drobyazko, I.N.; Krasil’nikov, V.N. Generation of acoustic-gravity waves by atmospheric turbulence. Radiophys. Quantum Electron. 1985, 28, 946–952. [Google Scholar] [CrossRef]
- Yampolski, Y.M.; Zalizovski, A.V.; Litvinenko, L.M.; Lizunov, G.V.; Groves, K.; Moldwin, M. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron. 2004, 9, 130–151. (In Russian) [Google Scholar]
- Brekhovskikh, L.M. On the radiation of infrasound into the atmosphere by oceanic waves. Izv. Akad. Nauk. SSSR 1968, 4, 444–450. (In Russian) [Google Scholar]
- Kshevetskii, S.P.; Gavrilov, N.M. Vertical propagation of nonlinear gravity waves and their breaking in the atmosphere. Geomagn. Aeron. 2003, 43, 69–76. [Google Scholar]
- Fritts, D.C.; Lund, T.S. Gravity Wave Influences in the Thermosphere and Ionosphere: Observations and Recent Modeling. In Aeronomy of the Earth’s Atmosphere and Ionosphere; Abdu, M., Pancheva, D., Eds.; IAGA Special Sopron Book Series; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Lizunov, G.; Skorokhod, T.; Hayakawa, M.; Korepanov, V. Formation of Ionospheric Precursors of Earthquakes—Probable Mechanism and Its Substantiation. Open J. Earthq. Res. 2020, 9, 142–169. [Google Scholar] [CrossRef]
- Holzworth, R.H.; Kelley, M.C.; Siefring, C.L.; Hale, L.C.; Mitchell, J.D. Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm. 2. Direct current electric fields and conductivity. J. Geophys. Res. 1985, 90, 9824–9830. [Google Scholar] [CrossRef]
- Chernogor, L.F. Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth-atmosphere-ionosphere-magnitosphere system. Space Sci. Technol. 2023, 29, 54–77. [Google Scholar] [CrossRef]
- Sedunov, Y.S.; Avdiushin, S.I.; Borisenkov, E.P.; Volkovitsky, O.A.; Petrov, N.N.; Reitenbakh, R.G.; Smirnov, V.I.; Chernikov, A.A. (Eds.) Atmosphere Handbook; Gidrometeoizdat: Leningrad, Russia, 1991; p. 510. (In Russian) [Google Scholar]
- Reist, P.C. Introduction to Aerosol Science; MacMillan Publ. Co.: New York, NY, USA, 1984; 299p. [Google Scholar]
- Chalmers, J.A. Atmospheric Electricity, 2nd ed.; Pergamon Press: Oxford, UK, 1967; 526p, ISBN 9781483185965. [Google Scholar]
- Bliokh, P. Variations of Electric Fields and Currents in the Lower Ionosphere Produced by Conductivity Growth of the Air above the Future Earthquake Center. In Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; TERRAPUB: Tokyo, Japan, 1999; pp. 829–838. [Google Scholar]
- Denisenko, V.; Pomozov, E. Penetration of an Electric Field from the Surface Layer of the Atmosphere into the Ionosphere. Sol.-Terr. Phys. 2010, 16, 70–75. (In Russian) [Google Scholar]
- Denisenko, V.V.; Ampferer, M.; Pomozov, E.V.; Kitaev, A.V.; Hausleitner, W.; Stangl, G.; Biernat, H.K. On electric field penetration from ground into the ionosphere. J. Atmos. Sol.-Terr. Phys. 2013, 102, 341–353. [Google Scholar] [CrossRef]
- Denisenko, V.V.; Nesterov, S.A.; Boudjada, M.Y.; Lammer, H. A mathematical model of quasistationary electric field penetration from ground to the ionosphere with inclined magnetic field. J. Atmos. Sol.-Terr. Phys. 2018, 179, 527–537. [Google Scholar] [CrossRef]
- Denisenko, V.V.; Boudjada, M.Y.; Horn, M.; Pomozov, E.V.; Biernat, H.K.; Schwingenschuh, K.; Lammer, H.; Prattes, G.; Cristea, E. Ionospheric conductivity effects on electrostatic field penetration into the ionosphere. Nat. Hazards Earth Syst. Sci. 2008, 8, 1009–1017. [Google Scholar] [CrossRef]
- Marshall, R.A. An improved model of the lightning electromagnetic field interaction with the D-region ionosphere. J. Geophys. Res. 2012, 117, A03316. [Google Scholar] [CrossRef]
- Gordillo-Vázquez, F.J.; Luque, A.; Haldoupis, C. Upper D region chemical kinetic modeling of LORE relaxation times. J. Geophys. Res. Space Phys. 2016, 121, 3525–3544. [Google Scholar] [CrossRef]
- Barta, V.; Haldoupis, C.; Sátori, G.; Buresova, D.; Chum, J.; Pozoga, M.; Berényi, K.A.; Bór, J.; Popek, M.; Kis, Á.; et al. Searching for effects caused by thunderstorms in midlatitude sporadic E layers. J. Atmos. Sol.-Terr. Phys. 2017, 161, 150–159. [Google Scholar] [CrossRef]
- Kelley, M.C.; Siefring, C.L.; Pfaff, R.P.; Kintner, P.M.; Larsen, M.; Green, R.; Holzworth, R.H.; Hale, L.C.; Mitchell, J.D.; Le Vine, D. Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm. 1. Campaign overview and initial ionospheric results. J. Geophys. Res. 1985, 90, 9815–9823. [Google Scholar] [CrossRef]
- Kraus, E.B.; Businger, J.A. Atmosphere-Ocean Interaction, 2nd ed.; Oxford University Press, Inc.: New York, NY, USA, 1994; 362p. [Google Scholar]
- Trakhtengerts, V.Y.; Rycroft, M.J. Whistler and Alfvén Mode Cyclotron Masers in Space; Cambridge University Press: Cambridge, UK, 2010; 354p. [Google Scholar] [CrossRef]
Shape | close to a spiral |
Eye radius | r0 = 15 km |
Core radius for w(r1) = 0 | r1 = R0/e = 225 km |
External radius | R0 = 600 km |
Effective radius of water vapor condensation zone | r2 = αr1 – r0 ≈ 46 km |
Thickness | h ≈ 15–20 km |
Horizontal speed peak height | h0 = 500 m |
Air mass | m = 1.2 × 1016 kg |
Air mass in core | m(r1) = 2 × 1015 kg |
Effective mass | mef ≈ 6.9 × 1014 kg |
Surface area of water vapor condensation zone | Sc ≈ 1.6 × 1011 m2 |
(m/s) | |||||||
---|---|---|---|---|---|---|---|
R0 (km) | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
300 | −29.2 | −44 | −61.8 | −82.6 | −106 | −133 | −163 |
450 | −31.6 | −47 | −65.4 | −86.8 | −111 | −139 | −169 |
600 | −35 | −50 | −69.5 | −91.6 | −117 | −144 | −176 |
750 | −37 | −54 | −74 | −97 | −122 | −152 | −180 |
Air pressure deficit maximum | Δp(r0) = 120 hPa |
Air density | ρ ≈ 1.2–1.3 kg/m3 |
Tangential speed | = (r0, h0) = 60 m/s = (r0, 0) = k3 |
Radial speed | u0 = u(r0, h0) = tan χ = 20 m/s u00 = u(r0, 0) = k3 u0 |
Total horizontal speed | V0 = V(r0, h0) = sec χ = 63 m/s V00 = V0(r0, 0) = k3 V0 |
Vertical speed | = 0.5 m/s |
Velocity of translational motion | = 5–10 m/s |
Length of movement | L ≈ 3000–5000 km |
Angle between the velocity vector and its tangential component | χ = 18° |
Centripetal acceleration maximum value | ≈ 19.44 × 10−2 m/s2 |
Coriolis acceleration maximum value | 2 ω0 sin φ ≈ 5.5 × 10−3 m/s2, φ = 45° |
Variables | Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
(m/s) | 1 | 3 | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
θs (°C) | 2.1 | 1.6 | 1.4 | 1.1 | 0.9 | 0.85 | 0.8 | 0.7 | 0.7 |
(m/s) | 28 | 34 | 36 | 43 | 46 | 49 | 51 | 53 | 55 |
(m/s) | 15 | 20 | 25 | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 90 |
u0 (m/s) | 4.8 | 6.4 | 8 | 9.6 | 11.2 | 12.8 | 16 | 19.2 | 22.4 | 25.6 | 28.8 |
V0 (m/s) | 15.8 | 21 | 26.3 | 31.5 | 36.8 | 42 | 52.5 | 63 | 73.5 | 84 | 94.5 |
w0 (cm/s) | 1.8 | 4.8 | 10.8 | 19.2 | 28 | 36 | 42 | 47 | 52 | 53 | 53 |
(m/s) | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 12 | 14 | 16 | 18 |
h0 (m) | 50 | 100 | 200 | 300 | 400 | 500 | 500 | 500 | 500 | 600 | 700 |
r0 (km) | 10 | 10 | 11 | 11 | 12 | 13 | 14 | 15 | 16 | 18 | 20 |
r1 (km) | 147 | 157 | 167 | 176 | 185 | 196 | 211 | 226 | 241 | 259 | 278 |
R0 (km) | 400 | 425 | 450 | 475 | 500 | 530 | 570 | 610 | 650 | 700 | 750 |
r2 (km) | 30 | 32.5 | 34 | 36.5 | 38 | 40 | 43 | 46 | 49 | 52 | 55 |
S0 × 10−11 (m2) | 5 | 5.7 | 6.4 | 7.1 | 7.9 | 8.8 | 10.2 | 11.7 | 13.3 | 15.4 | 17.7 |
mef × 10−14 (kg) | 3 | 3.4 | 3.8 | 4.3 | 4.7 | 5.3 | 6.1 | 7 | 8 | 9.2 | 10.1 |
m × 10−15 (kg) | 5 | 5.7 | 6.4 | 7.1 | 7.9 | 8.8 | 10.2 | 11.7 | 13.3 | 15.4 | 17.7 |
Ek1 × 10−18 (J) | 3.4 × 10−2 | 6.8 × 10−2 | 1.1 × 10−1 | 1.9 × 10−1 | 2.9 × 10−1 | 4.2 × 10−1 | 7.6 × 10−1 | 1.3 | 2 | 2.9 | 4.1 |
Ek2 × 10−18 (J) | 2.2 × 10−2 | 4.6 × 10−2 | 8 × 10−2 | 1.3 × 10−1 | 1.9 × 10−1 | 2.8 × 10−1 | 5 × 10−1 | 8.4 × 10−1 | 1.3 | 2 | 2.9 |
Ek × 10−18 (J) | 5.6 × 10−2 | 1.1 × 10−1 | 1.9 × 10−1 | 3.2 × 10−1 | 4.8 × 10−1 | 7 × 10−1 | 1.3 | 2.1 | 3.3 | 4.9 | 7 |
(K) | 1 | 1.3 | 1.5 | 2 | 2.1 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | 2.5 |
h1 (m) | 20 | 30 | 50 | 60 | 70 | 80 | 80 | 80 | 80 | 80 | 85 |
PT11 × 10−14 (W) | 3.3 × 10−2 | 9.3 × 10−2 | 2.4 × 10−1 | 4.8 × 10−1 | 7.3 × 10−1 | 1.1 | 1.6 | 2 | 2.5 | 3.1 | 3.6 |
PT12 × 10−14 (W) | 2.3 × 10−1 | 0.7 | 1.6 | 3.2 | 4.9 | 7.3 | 8.5 | 13.2 | 16.7 | 20.4 | 26.5 |
PT1 × 10−14 (W) | 2.6 × 10−1 | 0.8 | 1.8 | 3.7 | 5.6 | 8.4 | 9.6 | 15.2 | 19.2 | 23.4 | 30.1 |
Pf × 10−14 (W) | 1.7 × 10−3 | 4.6 × 10−3 | 10−2 | 1.9 × 10−2 | 3.4 × 10−2 | 5.6 × 10−2 | 1.3 × 10−1 | 2.5 × 10−1 | 4.6 × 10−1 | 7.9 × 10−1 | 1.3 |
η (%) | 3.4 | 3.6 | 3.4 | 3.4 | 3.4 | 2.4 | 3 | 2.8 | 2.8 | 3 | 3.2 |
τs (day) | 6.6 | 4.2 | 4 | 3.4 | 2.8 | 2.4 | 2 | 1.6 | 1.4 | 1.1 | 1 |
Δp(r0) (hPa) | 6 | 9.7 | 14.2 | 19.7 | 26 | 33.2 | 50 | 84.8 | 93.1 | 148 | 184 |
Pc × 10−14 (W) | 2.5 × 10−2 | 7.2 × 10−2 | 1.8 × 10−1 | 3.6 × 10−1 | 5.6 × 10−1 | 8.5 × 10−1 | 1.1 | 1.5 | 1.9 | 2.3 | 2.7 |
Δt2 (°C) | 12.1 | 12.6 | 12.2 | 12.7 | 12.5 | 12.2 | 12.2 | 12.2 | 12.2 | 11.8 | 11.6 |
PT2 × 10−14 (W) | 3.3 × 10−2 | 9.6 × 10−2 | 2.4 × 10−1 | 0.5 | 7.5 × 10−1 | 1.1 | 1.6 | 2 | 2.5 | 3.7 | 5 |
δpm(R0) (Pa) | 1.6 × 10−2 | 5.1 × 10−2 | 1.3 × 10−1 | 2.7 × 10−1 | 0.5 | 0.84 | 2.1 | 4.3 | 7.7 | 12.9 | 19.6 |
(R0) (mm/s) | 3.6 × 10−2 | 1.2 × 10−1 | 2.9 × 10−1 | 6.1 × 10−1 | 1.1 | 1.9 | 4.7 | 9.7 | 17.4 | 29.2 | 44.3 |
Πr (W/m2) | 5.7 × 10−7 | 5.9 × 10−6 | 3.8 × 10−5 | 1.6 × 10−4 | 5.7 × 10−4 | 1.6 × 10−3 | 9.5 × 10−3 | 4 × 10−2 | 1.3 × 10−1 | 3.8 × 10−1 | 0.9 |
Pr × 10−12 (W) | 2.9 × 10−7 | 3.4 × 10−6 | 2.4 × 10−5 | 1.1 × 10−4 | 4.5 × 10−4 | 1.4 × 10−3 | 9.5 × 10−3 | 4.5 × 10−2 | 1.7 × 10−1 | 5.8 × 10−1 | 1.6 |
Sr × 10−12 (m2) | 0.5 | 0.57 | 0.64 | 0.71 | 0.79 | 0.88 | 1 | 1.12 | 1.33 | 1.54 | 1.77 |
z0 (km) | 280 | 250 | 230 | 220 | 200 | 195 | 180 | 160 | 140 | 120 | 105 |
V0 (m/s) | fm (mHz) | Tmax (s) | Πa0 (W/m2) | δpa (Pa) | (m/s) | S × 10−9 (m2) | Pa (W) |
---|---|---|---|---|---|---|---|
10 | 147 | 6.8 | 3.7 × 10−7 | 1.3 × 10−2 | 2.9 × 10−5 | 0.7 | 2.6 × 102 |
15 | 98 | 10.2 | 9.2 × 10−6 | 6.4 × 10−2 | 1.4 × 10−4 | 0.7 | 6.5 × 103 |
20 | 74 | 13.6 | 9.2 × 10−5 | 0.2 | 4.5 × 10−4 | 0.7 | 6.5 × 104 |
25 | 59 | 17 | 5.5 × 10−4 | 0.5 | 1.1 × 10−3 | 0.85 | 4.7 × 105 |
30 | 49 | 20.4 | 2.4 × 10−3 | 1 | 2.3 × 10−3 | 0.85 | 2 × 106 |
35 | 42 | 23.8 | 8.1 × 10−3 | 1.9 | 4.3 × 10−3 | 1 | 8.1 × 106 |
40 | 37 | 27.2 | 2.4 × 10−2 | 3.3 | 7.5 × 10−3 | 1.2 | 2.9 × 107 |
50 | 29 | 34 | 0.14 | 7.9 | 1.8 × 10−2 | 1.4 | 2 × 108 |
60 | 25 | 40.8 | 0.6 | 16.3 | 3.7 × 10−2 | 1.6 | 9.6 × 108 |
70 | 21 | 47.6 | 2.1 | 30.4 | 6.9 × 10−2 | 1.8 | 3.8 × 109 |
80 | 18 | 54.4 | 6 | 51.4 | 0.12 | 2.3 | 1.4 × 1010 |
90 | 16 | 61.2 | 15.5 | 82.7 | 0.19 | 2.8 | 4.3 × 1010 |
Variables | Values | |||||
---|---|---|---|---|---|---|
Q (C/m3) | 10−10 | 10−9 | 10−8 | 10−7 | 10−6 | 10−5 |
w0 (m/s) | 3 × 10−2 | 4 × 10−2 | 5 × 10−2 | 0.1 | 0.2 | 0.3 |
ja (A/m2) | 3 × 10−12 | 4 × 10−11 | 5 × 10−10 | 10−8 | 2 × 10−7 | 3 × 10−6 |
(A/m3) | 3 × 10−16 | 4 × 10−15 | 5 × 10−14 | 10−12 | 2 × 10−11 | 3 × 10−10 |
Ee (V/m) | 105 | 2 × 105 | 4 × 105 | 6 × 105 | 8 × 105 | 106 |
Fe (N/m3) | 10−5 | 2 × 10−4 | 4 × 10−3 | 6 × 10−2 | 0.8 | 10 |
Fp (N/m3) | 0.1 | 0.3 | 0.6 | 0.8 | 1.1 | 1.2 |
Fk (N/m3) | 2 × 10−3 | 4 × 10−3 | 7 × 10−3 | 8 × 10−3 | 9 × 10−3 | 10−2 |
Fc (N/m3) | 3 × 10−2 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
(m/s) | 15 | 30 | 50 | 60 | 70 | 80 |
r0 (km) | 10 | 11 | 14 | 15 | 16 | 18 |
∆p(r0) (kPa) | 0.8 | 3 | 9 | 12 | 17 | 22 |
R0 (km) | 400 | 450 | 570 | 610 | 650 | 700 |
ΔB(R0) (nT) | 7.5 × 10−4 | 1.1 × 10−2 | 0.2 | 3.8 | 82 | 1.3 × 103 |
Typhoon Parameter | Kong-Rey | Lekima | Lingling | Faxai | Hagibis |
---|---|---|---|---|---|
Birth | 29 September 2018 06:00:00 UTC | 4 August 2019 06:00:00 UTC | 2 September 2019 00:00:00 UTC | 4 September 2019 18:00:00 UTC | 5 October 2019 18:00:00 UTC |
Death | 6 October 2018 12:00:00 UTC | 12 August 2019 18:00:00 UTC | 8 September 2019 00:00:00 UTC | 10 September 2019 00:00:00 UTC | 13 October 2019 03:00:00 UTC |
Lifetime | 174 h/7.250 days | 204 h/8.500 days | 168 h/7.000 days | 126 h/5.250 days | 177 h/7.375 days |
Minimum pressure | 900 hPa | 925 hPa | 940 hPa | 955 hPa | 915 hPa |
Pressure maximum deficit | 105 hPa | 75 hPa | 65 hPa | 52 hPa | 95 hPa |
Maximum wind speed | 215 km/h (60 m/s) | 195 km/h (54 m/s) | 176 km/h (49 m/s) | 157 km/h (43.7 m/s) | 259 km/h (71.8 m/s) |
Largest radius of storm wind | 260 km | 190 km | 170 km | 110 km | 370 km |
Largest radius of gale wind | 750 km | 700 km | 560 km | 330 km | 750 km |
Length of movement | 4107 km | 2854 km | 3750 km | 3663 km | 4785 km |
Average speed | 23.6 km/h (6.56 m/s) | 14.0 km/h (3.9 m/s) | 26.0 km/h (7.2 m/s) | 29.1 km/h (8.1 m/s) | 27.0 km/h (7.5 m/s) |
Range of movement | Latitude 25.3°; Longitude 16.7° | Latitude 21.0°; Longitude 11.1° | Latitude 29.2°; Longitude 4.6° | Latitude 20.4°; Longitude 17.8° | Latitude 25.8°; Longitude 20.4° |
Typhoon kinetic energy | 1.65 × 1018 J | 7.8 × 1017 J | 5.5 × 1017 J | 1.8 × 1017 J | 5.5 × 1018 J |
Typhoon power | 1.7 × 1013 W | 4.6 × 1012 W | 5.5 × 1012 W | 1.3 × 1012 W | 1.1 × 1014 W |
Rainfall | 250–300 mm h−1 | 250–300 mm/h | 250–320 mm/h | 260–300 mm/h | 260–300 mm/h |
Maximum pressure drop | −25 hPa/6 h; −40 hPa/12 h −65 hPa/24 h; −96 hPa/48 h | −10 hPa/6 h; −20 hPa/12 h −35 hPa/24 h; −50 hPa/48 h | −10 hPa/6 h −15 hPa/12 h −30 hPa/24 h −50 hPa/48 h | −10 hPa/6 h −15 hPa/12 h −25 hPa/24 h −39 hPa/48 h | −15 hPa/6 h −30 hPa/12 h −60 hPa/24 h −85 hPa/48 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernogor, L.F. A Tropical Cyclone or Typhoon as an Element of the Earth–Atmosphere–Ionosphere–Magnetosphere System: Theory, Simulations, and Observations. Remote Sens. 2023, 15, 4919. https://doi.org/10.3390/rs15204919
Chernogor LF. A Tropical Cyclone or Typhoon as an Element of the Earth–Atmosphere–Ionosphere–Magnetosphere System: Theory, Simulations, and Observations. Remote Sensing. 2023; 15(20):4919. https://doi.org/10.3390/rs15204919
Chicago/Turabian StyleChernogor, Leonid F. 2023. "A Tropical Cyclone or Typhoon as an Element of the Earth–Atmosphere–Ionosphere–Magnetosphere System: Theory, Simulations, and Observations" Remote Sensing 15, no. 20: 4919. https://doi.org/10.3390/rs15204919
APA StyleChernogor, L. F. (2023). A Tropical Cyclone or Typhoon as an Element of the Earth–Atmosphere–Ionosphere–Magnetosphere System: Theory, Simulations, and Observations. Remote Sensing, 15(20), 4919. https://doi.org/10.3390/rs15204919