Mapping Soil Organic Matter Using Different Modeling Techniques in the Dryland Agroecosystem of Huang-Huai-Hai Plain, Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Soil Collection and Analysis
2.2.2. Sources of Auxiliary Variables
2.3. Model Development and Validation
2.4. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Relative Importance of Auxiliary Variables
3.3. Evaluation of Model Performance
3.4. Spatial Prediction of SOM
4. Discussions
4.1. Relationship between SOM and Environmental Covariates
4.2. Comparison of Prediction Performance of Different Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Xie, X.F.; Pu, L.J.; Zhu, M.; Wu, T.; Wang, X.H. Effect of long-term reclamation on soil quality in agricultural reclaimed coastal saline soil, eastern China. J. Soil Sediments 2020, 20, 3909–3920. [Google Scholar] [CrossRef]
- Xie, X.F.; Pu, L.J.; Zhu, M.; Meadows, M.; Sun, L.C.; Wu, T.; Bu, X.G.; Xu, Y. Differential effects of various reclamation treatments on soil characteristics: An experimental study of newly reclaimed tidal mudflats on the east China coast. Sci. Total Environ. 2021, 768, 144996. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Hoffland, E.; Kuyper, T.W.; Comans, R.; Creamer, R.E. Eco-functionality of organic matter in soils. Plant Soil 2020, 455, 1–22. [Google Scholar] [CrossRef]
- Hu, B.F.; Ni, H.J.; Xie, M.D.; Li, H.Y.; Wen, Y.L.; Chen, S.C.; Zhou, Y.; Teng, H.F.; Bourennane, H.; Shi, Z. Mapping soil organic matter and identifying potential controls in the farmland of Southern China: Integration of multi-source data, machine learning and geostatistics. Land Degrad. Dev. 2023. early view. [Google Scholar] [CrossRef]
- Nuralykyzy, B.; Nurzhan, A.; Li, N.; Huang, Q.; Zhu, Z.L.; An, S.S. Influence of land use types on soil carbon fractions in the Qaidam Basin of the Qinghai-Tibet Plateau. Catena 2023, 231, 107273. [Google Scholar] [CrossRef]
- Poeplau, C.; Prietz, R.; Don, A. Plot-scale variability of organic carbon in temperate agricultural soils—Implications for soil monitoring. J. Plant Nutr. Soil Sci. 2022, 185, 403–416. [Google Scholar] [CrossRef]
- Bahri, H.; Raclot, D.; Barbouchi, M.; Lagacherie, P.; Annabi, M. Mapping soil organic carbon stocks in Tunisian topsoils. Geoderma Reg. 2022, 30, e00561. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Methodologies for Global Soil Mapping. In Digital Soil Mapping; Springer: Dordrecht, The Netherlands, 2010; pp. 429–436. [Google Scholar]
- Guo, P.T.; Li, M.F.; Luo, W.; Tang, Q.F.; Liu, Z.W.; Lin, Z.M. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma 2015, 237–238, 49–59. [Google Scholar] [CrossRef]
- Coelho, F.F.; Giasson, E.; Campos, A.R.; Silva, R.G.P.O.; Costa, J.J.F. Geographic object-based image analysis and artificial neural networks for digital soil mapping. Catena 2021, 206, 105568. [Google Scholar] [CrossRef]
- Chaplot, V.; Walter, C.; Curmi, P. Improving soil hydromorphy prediction according to DEM resolution and available pedological data. Geoderma 2000, 97, 405–422. [Google Scholar] [CrossRef]
- Xie, X.F.; Pu, L.J.; Zhu, M.; Wu, T.; Xu, Y. Spatio-temporal variability of soil salinity and sodicity in agricultural reclaimed coastal wetlands, Eastern China. Arch. Agron. Soil Sci. 2020, 66, 1639–1650. [Google Scholar] [CrossRef]
- Andrew, S.; Ganesh, P.; Keith, S. Evaluating regression-kriging for mid-infrared spectroscopy prediction of soil properties in western Kenya. Geoderma Reg. 2017, 10, 39–47. [Google Scholar]
- Owusu, S.; Yigini, Y.; Olmedo, G.F.; Omuto, C.T. Spatial prediction of soil organic carbon stocks in Ghana using legacy data. Geoderma 2020, 360, 114008. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T.; Mrker, M.; Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Li, Q.Q.; Yue, T.X.; Wang, C.Q.; Zhang, W.J.; Yu, Y.; Li, B.; Yang, J.; Bai, G.C. Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach. Catena 2013, 104, 210–218. [Google Scholar] [CrossRef]
- Lamichhane, S.; Adhikari, K.; Kumar, L. National soil organic carbon map of agricultural lands in Nepal. Geoderma Reg. 2022, 30, e00568. [Google Scholar] [CrossRef]
- Zhang, P.P.; Wang, Y.Q.; Sun, H.; Qi, L.J.; Liu, H.; Wang, Z. Spatial variation and distribution of soil organic carbon in an urban ecosystem from high-density sampling. Catena 2021, 204, 105364. [Google Scholar] [CrossRef]
- Xie, X.F.; Wu, T.; Zhu, M.; Jiang, G.J.; Xu, Y.; Wang, X.H.; Pu, L.J. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 2021, 120, 106925. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.J.; Ji, C.; Xu, X.R.; Wang, H.; Pan, J.J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, J.; Chen, S.; Wang, N.; Shi, Z.; Huang, Y.; Zhuo, Z. Digital Mapping of Soil Organic Carbon with Machine Learning in Dryland of Northeast and North Plain China. Remote Sens. 2022, 14, 2504. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Garosi, Y.; Owliaie, H.R.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena 2022, 208, 105723. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Barthold, F.; Blank, B.; Kögel-Knabner, I. Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem. Plant Soil 2011, 340, 7–24. [Google Scholar] [CrossRef]
- Chagas, C.; Junior, W.; Bhering, S.B.; Filho, B.C. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. Catena 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Gibson, A.J.; Hancock, G.R.; Bretreger, D.; Cox, T.; Hughes, J.; Kunkel, V. Assessing digital elevation model resolution for soil organic carbon prediction. Geoderma 2021, 398, 115106. [Google Scholar] [CrossRef]
- Lu, R.K. Chemical Analysis of Agricultural Soils; China Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Veronesi, F.; Schillaci, C. Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecol. Indic. 2019, 101, 1032–1044. [Google Scholar] [CrossRef]
- Wang, C.; Cui, Y.; Ma, Z.; Guo, Y.; Zhang, M. Simulating spatial variation of soil carbon content in the Yellow River Delta: Comparative analysis of two artificial neural network models. Wetlands 2020, 40, 223–233. [Google Scholar] [CrossRef]
- Mahmoudzadeh, H.; Matinfar, H.R.; Taghizadeh-Mehrjardi, R.; Kerry, R. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Reg. 2020, 21, e00260. [Google Scholar] [CrossRef]
- Zhang, K.; Dang, H.; Zhang, Q.; Cheng, X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: Evidence from stable isotopes. Glob. Chang. Biol. 2015, 21, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Liu, J.; Yu, K.; Wang, Y.; He, P. A hybrid model for predicting spatial distribution of soil organic matter in a bamboo forest based on general regression neural network and interative algorithm. J. For. Res. 2020, 31, 1673–1680. [Google Scholar] [CrossRef]
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma 2019, 342, 85–92. [Google Scholar] [CrossRef]
- Ye, Y.; Jiang, Y.; Kuang, L.; Han, Y.; Guo, X. Predicting spatial distribution of soil organic carbon and total nitrogen in a typical human impacted area. Geocarto Int. 2022, 37, 4465–4482. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, J.; Chen, L.; Chu, H.; He, J.S.; Zhang, Y.J.; Feng, X. Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai-Tibet alpine grasslands. Soil Biol. Biochem. 2021, 156, 108213. [Google Scholar] [CrossRef]
- Junior, W.; Lagacherie, P.; Chagas, C.; Filho, B.C.; Bhering, S.B. A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment. Geoderma 2014, 232–234, 479–486. [Google Scholar] [CrossRef]
- Zheng, G.; Ryu, D.; Jiao, C.; Hong, C. Estimation of organic matter content in coastal soil using reflectance spectroscopy. Pedosphere 2016, 26, 130–136. [Google Scholar] [CrossRef]
- Jin, X.; Song, K.; Du, J.; Liu, H.; Wen, Z. Comparison of different satellite bands and vegetation indices for estimation of soil organic matter based on simulated spectral configuration. Agric. For. Meteorol. 2017, 244–245, 57–71. [Google Scholar] [CrossRef]
- Wei, F.; Liu, J.; Xia, L.; Xu, Z.; Long, X. Spatial prediction method of farmland soil organic matter in Weibei Dryland of Shaanxi Province. Environ. Sci. 2022, 43, 1097–1107. [Google Scholar]
- Boubehziz, S.; Khanchoul, K.; Benslama, M.; Benslama, A.; Marchetti, A.; Francaviglia, R.; Piccini, C. Predictive mapping of soil organic carbon in Northeast Algeria. Catena 2020, 190, 104539. [Google Scholar] [CrossRef]
- Zhang, M.W.; Liu, H.J.; Zhang, M.N.; Yan, H.X.; Jin, Y.L.; Han, Y.; Tang, H.T.; Zhang, X.H.; Zhang, X.L. Mapping soil organic matter and analyzing the prediction accuracy of typical cropland soil types on the Northern Songnen Plain. Remote Sens. 2021, 13, 5162. [Google Scholar] [CrossRef]
- McBratney, A.B.; Odeh, I.O.A.; Bishop, T.F.A.; Dunbar, M.S.; Shatar, T.M. An overview of pedometric techniques for use in soil survey. Geoderma 2000, 97, 293–327. [Google Scholar] [CrossRef]
- Li, Y. Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information. Geoderma 2010, 159, 63–75. [Google Scholar] [CrossRef]
- Li, Q.Q.; Zhang, X.; Wang, C.Q.; Li, B.; Gao, X.S.; Yuan, D.G.; Luo, Y.L. Spatial prediction of soil nutrient in a hilly area using artificial neural network model combined with kriging. Arch. Agron. Soil Sci. 2016, 62, 1541–1553. [Google Scholar] [CrossRef]
- Sabour, M.R.; Moftakhari, S.; Movahed, A. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors. Chemosphere 2017, 168, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- National Soil Survey Office. Soil Survey Technique in China; Agricultural Press: Beijing, China, 1992. [Google Scholar]
- Zhao, M.S.; Zhang, G.L.; Wu, Y.J.; Li, D.C.; Zhao, Y.G. Driving forces of soil organic matter change in Jiangsu province of China. Soil Use Manag. 2015, 31, 440–449. [Google Scholar] [CrossRef]
- Du, Z.; Gao, B.; Ou, C.; Du, Z.; Zhu, D. A quantitative analysis of factors influencing organic matter concentration in the topsoil of black soil in Northeast China based on spatial heterogeneous patterns. Int. J. Geo-Inf. 2021, 10, 348. [Google Scholar] [CrossRef]
- Huang, B.; Sun, W.X.; Zhao, Y.C.; Zhu, J.; Yao, R.J.; Zou, Z.; Ding, F.; Su, J.P. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 2007, 139, 336–345. [Google Scholar] [CrossRef]
- Motavalli, P.P.; Palm, C.A.; Parton, W.J.; Elliott, E.T.; Frey, S.D. Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biol. Biochem. 1995, 27, 1589–1599. [Google Scholar] [CrossRef]
- Tian, Y.; Takanashi, K.; Toda, H.; Haibara, K.; Ding, F. pH and substrate regulation of nitrogen and carbon dynamics in forest soils in a karst region of the upper Yangtze River Basin, China. J. For. Res. 2013, 18, 228–237. [Google Scholar] [CrossRef]
- Grybos, M.; Davranche, M.; Gruau, G.; Petitjean, P.; Pédrot, M. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 2009, 154, 13–19. [Google Scholar] [CrossRef]
- Feyissa, A.; Raza, S.T.; Cheng, X. Soil carbon stabilization and potential stabilizing mechanisms along elevational gradients in alpine forest and grassland ecosystems of Southwest China. Catena 2023, 229, 107210. [Google Scholar] [CrossRef]
- Osland, M.J.; Gabler, C.A.; Grace, J.B.; Day, R.H.; Mccoy, M.; McLeod, J.L.; From, A.S.; Enwright, N.M.; Feher, L.C.; Stagg, C.; et al. Climate and plant controls on soil organic matter in coastal wetlands. Glob. Chang. Biol. 2018, 24, 5361–5379. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Biswas, A.; Ma, Z.Q.; Lu, Y.L.; Chen, Q.X.; Shi, Z. Revealing the scale-specific controls of soil organic matter at largescale in northeast and North China plain. Geoderma 2016, 271, 71–79. [Google Scholar] [CrossRef]
- Bull, I.D.; Bergen, P.F.; Bol, R.; Brown, S.; Gledhill, A.R.; Gray, A.J.; Harkness, D.D.; Woodbury, S.E.; Evershed, R.P. Estimating the contribution of spartina anglica biomass to salt-marsh sediments using compound specific stable carbon isotope measurements. Org. Geochem. 1999, 30, 477–483. [Google Scholar] [CrossRef]
- Dematte, J.; Fiorio, P.R.; Ben-Dor, E. Estimation of soil properties by orbital and laboratory reflectance means and its relation with soil classification. Open Remote Sen. J. 2009, 2, 12–23. [Google Scholar] [CrossRef]
- Liao, K.H.; Xu, S.H.; Wu, J.C.; Zhu, Q. Spatial estimation of surface soil texture using remote sensing data. Soil Sci. Plant Nutr. 2013, 59, 488–500. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Q.; Fei, T.; Wang, J.; Shi, T.; Kai, G.; Li, X.; Chen, Y. Transferability of a visible and near-infrared model for soil organic matter estimation in riparian landscapes. Remote Sens. 2014, 6, 4305–4322. [Google Scholar] [CrossRef]
- Tan, Q.; Geng, J.; Fang, H.; Li, Y.; Guo, Y. Exploring the impacts of data source, model types and spatial scales on the soil organic carbon prediction: A case study in the red soil hilly region of Southern China. Remote Sens. 2022, 14, 5151. [Google Scholar] [CrossRef]
- Ceddia, M.B.; Gomes, A.S.; Vasques, G.M.; Pinheiro, É.F.M. Soil Carbon Stock and Particle Size Fractions in the Central Amazon Predicted from Remotely Sensed Relief, Multispectral and Radar Data. Remote Sens. 2017, 9, 124. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Pan, G.; Smith, P.; Cheng, K. Irrigation regime affected soc content rather than plow layer thickness of rice paddies: A county level survey from a river basin in lower Yangtze valley, China. Agric. Water Manag. 2016, 172, 31–39. [Google Scholar] [CrossRef]
Types | Auxiliary Variables | References |
---|---|---|
Terrain | elevation, slope, aspect, relief degree of land surface (RDLS), surface roughness (SR), surface cutting depth (SCD), topographic wetness index (TWI), stream power index (SPI), sediment transport index (STI) | [17,30,31,32] |
Climate | mean annual precipitation (MAP), mean annual temperature (MAT) | [33,34] |
Vegetation | ratio vegetation index (RVI), normalized difference vegetation index (NDVI), difference vegetation index (DVI) | [31,35,36] |
Primary productivity | net primary productivity (NPP) | [37] |
Spectral | blue (Band 2), green (Band 3), red (Band 4), near infrared (Band 5), short-wavelength infrared 1 (Band 6), short-wavelength infrared 2 (Band 7), ratio of band | [38,39,40] |
Soil attributes | pH, alkali-hydrolyzable nitrogen (AN), available phosphorus (AP), available potassium (AK) | [25,41] |
Dataset | Number | Min (g kg−1) | Max (g kg−1) | Mean (g kg−1) | S.D (g kg−1) | CV (%) |
---|---|---|---|---|---|---|
Training | 514 | 7.20 | 32.10 | 19.56 | 4.36 | 22.29 |
Validation | 219 | 10.20 | 31.90 | 19.51 | 4.34 | 22.25 |
Auxiliary Variables | Coefficient 1 | Auxiliary Variables | Coefficient |
---|---|---|---|
pH | –0.219 *** | RDLS | 0.123 ** |
AN | 0.588 *** | SCD | 0.119 ** |
AP | 0.153 *** | SR | 0.087 * |
AK | 0.394 *** | Band 2/Band 7 | –0.093 * |
MAP | 0.241 *** | Band 3/Band 6 | –0.078 * |
Elevation | 0.110 ** | Band 3/Band 7 | –0.100 ** |
Slope | 0.102 ** | Band 4/Band 7 | –0.092 * |
Variables | % IncMSE 1 | Variables | % IncMSE | Variables | % IncMSE |
---|---|---|---|---|---|
AN | 26.11 | Band 4/Band 7 | 6.38 | Band 2/Band 7 | 5.38 |
AK | 17.73 | Band 7/Band 6 | 6.26 | Band 2 | 5.38 |
MAP | 13.26 | Band 6/Band 3 | 6.02 | AP | 5.32 |
pH | 11.80 | Band 4 | 5.97 | Band 5/Band 6 | 5.27 |
MAT | 8.80 | Band 4/Band 3 | 5.94 | Band 3/Band 2 | 5.23 |
Band 7/Band 4 | 7.50 | NDVI | 5.92 | Band 4/Band 5 | 5.21 |
Band 6/Band 7 | 7.02 | Band 3 | 5.79 | Band 7/Band 2 | 5.16 |
Band 4/Band 6 | 6.99 | Band 2/Band 6 | 5.73 | Band 3/Band 4 | 5.10 |
Band 7/Band 5 | 6.57 | Band 2/Band 3 | 5.60 | ||
Band 7 | 6.45 | Band 6/Band 4 | 5.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Xie, X.; Pu, L.; Jia, Z.; Xu, F. Mapping Soil Organic Matter Using Different Modeling Techniques in the Dryland Agroecosystem of Huang-Huai-Hai Plain, Eastern China. Remote Sens. 2023, 15, 4945. https://doi.org/10.3390/rs15204945
Jin H, Xie X, Pu L, Jia Z, Xu F. Mapping Soil Organic Matter Using Different Modeling Techniques in the Dryland Agroecosystem of Huang-Huai-Hai Plain, Eastern China. Remote Sensing. 2023; 15(20):4945. https://doi.org/10.3390/rs15204945
Chicago/Turabian StyleJin, Hua, Xuefeng Xie, Lijie Pu, Zhenyi Jia, and Fei Xu. 2023. "Mapping Soil Organic Matter Using Different Modeling Techniques in the Dryland Agroecosystem of Huang-Huai-Hai Plain, Eastern China" Remote Sensing 15, no. 20: 4945. https://doi.org/10.3390/rs15204945
APA StyleJin, H., Xie, X., Pu, L., Jia, Z., & Xu, F. (2023). Mapping Soil Organic Matter Using Different Modeling Techniques in the Dryland Agroecosystem of Huang-Huai-Hai Plain, Eastern China. Remote Sensing, 15(20), 4945. https://doi.org/10.3390/rs15204945