Rainfall-Induced Shallow Landslide Recognition and Transferability Using Object-Based Image Analysis in Brazil
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Object-Based Mass Movement Mapping
3.3. Accuracy Assessment
4. Results
4.1. Semi-Automated Object-Based Mapping of Shallow Landslides
Landslide Distribution Analysis
4.2. Rule Set Transferability
4.3. Common Classification Errors
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CRED. Disasters in Numbers 2021; Technical Report; Centre for Research on the Epidemiology of Disasters: Brussels, Belgium, 2022. [Google Scholar]
- Alcántara-Ayala, I. Time in a bottle: Challenges to disaster studies in Latin America and the Caribbean. Disasters 2019, 43, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Netto, A.L.; de Souza Avelar, A.; Lacerda, W.A. Landslides and Disasters in Southeastern and Southern Brazil. In Natural Hazards and Human-Exacerbated Disasters in Latin America; Elsevier: Amsterdam, The Netherlands, 2009; pp. 223–243. [Google Scholar] [CrossRef]
- Vieira, B.C.; Gramani, M.F. Serra do Mar: The most tormented relief in Brazil. In Landscapes and Landforms of Brazil; Springer: Dordrecht, The Netherlands, 2015; pp. 285–297. [Google Scholar]
- IBGE. Suscetibilidade a Deslizamentos do Brasil: Primeira Aproximação; Technical Report; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2019.
- Alvalá, R.C.D.S.; Assis Dias, M.C.; Saito, S.M.; Stenner, C.; Franco, C.; Amadeu, P.; Ribeiro, J.; Santana, R.A.S.M.; Nobre, C.A. Mapping characteristics of at-risk population to disasters in the context of Brazilian early warning system. Int. J. Disaster Risk Reduct. 2019, 41, 101326. [Google Scholar] [CrossRef]
- Saito, S.M.; de Assis Dias, M.C.; Ribeiro, D.F.; dos Santos Alvalá, R.C.; de Souza, D.B.; de Moraes Santana, R.A.S.; de Souza, P.A.; Ribeiro, J.V.M.; Stenner, C. Disaster risk areas in Brazil: Outcomes from an intra-urban scale analysis. Int. J. Disaster Resil. Built Environ. 2021, 12, 238–250. [Google Scholar] [CrossRef]
- Dias, H.C.; Hölbling, D.; Grohmann, C.H. Landslide Inventory Mapping in Brazil: Status and challenges. In Proceedings of the XIII International Symposium on Landslides, Cartagena, Colombia, 22–26 February 2021. [Google Scholar]
- Dias, H.C.; Hölbling, D.; Grohmann, C.H. Landslide Susceptibility Mapping in Brazil: A Review. Geosciences 2021, 11, 425. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Carrara, A. Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin, Central Italy. Environ. Manag. 2000, 25, 247–263. [Google Scholar] [CrossRef]
- Avelar, A.S.; Netto, A.L.C.; Lacerda, W.A.; Becker, L.B.; Mendonça, M.B. Mechanisms of the Recent Catastrophic Landslides in the Mountainous Range of Rio de Janeiro, Brazil. In Landslide Science and Practice; Springer: Berlin/Heidelberg, Germany, 2013; pp. 265–270. [Google Scholar] [CrossRef]
- Netto, A.L.C.; Sato, A.M.; de Souza Avelar, A.; Vianna, L.G.G.; Araújo, I.S.; Ferreira, D.L.C.; Lima, P.H.; Silva, A.P.A.; Silva, R.P. January 2011: The Extreme Landslide Disaster in Brazil. In Landslide Science and Practice; Springer: Berlin/Heidelberg, Germany, 2013; pp. 377–384. [Google Scholar] [CrossRef]
- Carou, C.B.; Vieira, B.C.; Martins, T.D.; Gramani, M.F. Inventário dos escorregamentos da Bacia do rio Gurutuba, Vale do Ribeira (SP). Rev. Dep. Geogr. 2017, 172–179. [Google Scholar] [CrossRef]
- Dias, H.C.; Hölbling, D.; Grohmann, C.H. Shallow landslide mapping using freely accessible images: A case study in the Ribeira Valley, Brazil. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Dias, H.C.; Sandre, L.H.; Alarcón, D.A.S.; Grohmann, C.H.; Quintanilha, J.A. Landslide recognition using SVM, Random Forest, and Maximum Likelihood classifiers on high-resolution satellite images: A case study of Itaóca, southeastern Brazil. Braz. J. Geol. 2021, 51, e20200105. [Google Scholar] [CrossRef]
- da Silva, D.F.S.; Corteletti, R.C.; Filgueiras, R.A.C.; Santos, A.E.M. Correlations between landslide scars parameters using remote sensing methods in the estrada de ferro Vitória-Minas, southeastern Brazil. Rev. Bras. Geomorfol. 2021, 22, 297–314. [Google Scholar] [CrossRef]
- Uehara, T.D.T.; Körting, T.S.; dos Reis Soares, A.; Quevedo, R.P. Time-series metrics applied to land use and land cover mapping with focus on landslide detection. J. Appl. Remote Sens. 2022, 16, 034518. [Google Scholar] [CrossRef]
- Soares, L.P.; Dias, H.C.; Garcia, G.P.B.; Grohmann, C.H. Landslide Segmentation with Deep Learning: Evaluating Model Generalization in Rainfall-Induced Landslides in Brazil. Remote Sens. 2022, 14, 2237. [Google Scholar] [CrossRef]
- Xu, G.; Wang, Y.; Wang, L.; Soares, L.P.; Grohmann, C.H. Feature-Based Constraint Deep CNN Method for Mapping Rainfall-Induced Landslides in Remote Regions With Mountainous Terrain: An Application to Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2644–2659. [Google Scholar] [CrossRef]
- Schwarz, H.; Michel, G.P.; Zanandrea, F.; Paul, L.R.; Salvador, C.G. Uso de caracterização morfométrica e geomorfológica na análise de mapeamentos de cicatrizes de escorregamentos. Rev. Bras. Geomorfol. 2023, 24, e2185. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Hölbling, D.; Füreder, P.; Antolini, F.; Cigna, F.; Casagli, N.; Lang, S. A Semi-Automated Object-Based Approach for Landslide Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories. Remote Sens. 2012, 4, 1310–1336. [Google Scholar] [CrossRef]
- Hölbling, D.; Eisank, C.; Albrecht, F.; Vecchiotti, F.; Friedl, B.; Weinke, E.; Kociu, A. Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors. Geosciences 2017, 7, 37. [Google Scholar] [CrossRef]
- Comert, R.; Avdan, U.; Gorum, T.; Nefeslioglu, H.A. Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data. Eng. Geol. 2019, 260, 105264. [Google Scholar] [CrossRef]
- Karantanellis, E.; Marinos, V.; Vassilakis, E.; Hölbling, D. Evaluation of Machine Learning Algorithms for Object-Based Mapping of Landslide Zones Using UAV Data. Geosciences 2021, 11, 305. [Google Scholar] [CrossRef]
- Hölbling, D. Data and knowledge integration for object-based landslide mapping—Challenges, opportunities and applications. gis. Sci. Z. Geoinform. 2022, 1, 1–13. [Google Scholar]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Heleno, S.; Matias, M.; Pina, P.; Sousa, A.J. Semiautomated object-based classification of rain-induced landslides with VHR multispectral images on Madeira Island. Nat. Hazards Earth Syst. Sci. 2016, 16, 1035–1048. [Google Scholar] [CrossRef]
- Hölbling, D.; Friedl, B.; Eisank, C. An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Sci. Inform. 2015, 8, 327–335. [Google Scholar] [CrossRef]
- Dias, H.C.; Hölbling, D.; Dias, V.C.; Grohmann, C.H. Application of Object-Based Image Analysis for Detecting and Differentiating between Shallow Landslides and Debris Flows. GI Forum 2023, 1, 34–44. [Google Scholar] [CrossRef]
- Knevels, R.; Petschko, H.; Leopold, P.; Brenning, A. Geographic Object-Based Image Analysis for Automated Landslide Detection Using Open Source GIS Software. ISPRS Int. J. Geo-Inf. 2019, 8, 551. [Google Scholar] [CrossRef]
- Amatya, P.; Kirschbaum, D.; Stanley, T.; Tanyas, H. Landslide mapping using object-based image analysis and open source tools. Eng. Geol. 2021, 282, 106000. [Google Scholar] [CrossRef]
- Hölbling, D.; Abad, L.; Dabiri, Z.; Prasicek, G.; Tsai, T.T.; Argentin, A.L. Mapping and Analyzing the Evolution of the Butangbunasi Landslide Using Landsat Time Series with Respect to Heavy Rainfall Events during Typhoons. Appl. Sci. 2020, 10, 630. [Google Scholar] [CrossRef]
- Machado, C.A.S.; Quintanilha, J.A. Identification of trip generators using remote sensing and geographic information system. Transp. Res. Interdiscip. Perspect. 2019, 3, 100069. [Google Scholar] [CrossRef]
- Manfré, L.A.; Cruz, B.B.; Quintanilha, J.A. Urban Settlements and Road Network Analysis on the Surrounding Area of the Almirante Alvaro Alberto Nuclear Complex, Angra dos Reis, Brazil. Appl. Spat. Anal. Policy 2020, 13, 209–221. [Google Scholar] [CrossRef]
- Utsumi, A.G.; Pissarra, T.C.T.; Rosalen, D.L.; Filho, M.V.M.; Rotta, L.H.S. Gully mapping using geographic object-based image analysis: A case study at catchment scale in the Brazilian Cerrado. Remote Sens. Appl. Soc. Environ. 2020, 20, 100399. [Google Scholar] [CrossRef]
- Zoffoli, M.L.; Frouin, R.; Moura, R.L.; de Medeiros, T.A.G.; Bastos, A.C.; Kampel, M. Spatial distribution patterns of coral reefs in the Abrolhos region (Brazil, South Atlantic ocean). Cont. Shelf Res. 2022, 246, 104808. [Google Scholar] [CrossRef]
- de Medeiros, T.P.; Morellato, L.P.C.; Silva, T.S.F. Spatial distribution and temporal variation of tropical mountaintop vegetation through images obtained by drones. Front. Environ. Sci. 2023, 11, 1083328. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hossain, M.D.; Chen, D. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Su, T.; Zhang, S. Local and global evaluation for remote sensing image segmentation. ISPRS J. Photogramm. Remote Sens. 2017, 130, 256–276. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- IBGE. Censo Demográfico 2010; Technical Report; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2010.
- Ross, J.L.S. A morfogênese da bacia do Ribeira do Iguape e os sistemas ambientais. GEOUSP Espaç. Tempo 2002, 6, 21–46. [Google Scholar]
- Faleiros, F.; Morais, S.; Costa, V. Geologia dos Recursos Naturais da Folha Apiaí- SG.22-X-B-V, Estados de São Paulo e Paraná—Escala 1:100.000; Technical Report; CPRM: São Paulo, Brazil, 2012; 107p.
- Zenero, J.; Vieira, O.; Godoy, A. Geologia e Litogeoquímica do Batólito de Itaóca, Sul do estado de São Paulo. Geociências 2020, 39, 317–342. [Google Scholar] [CrossRef]
- Rossi, M. Mapa Pedológico do Estado de São Paulo: Revisado e Ampliado; Instituto Florestal: São Paulo, Brazil, 2017; Volume 1, p. 118.
- Brollo, M.J.; Santoro, J.; Penteado, D.R.; da Silva, P.C.F.; Ribeiro, R.R. Itaóca (SP): Histórico de acidentes e desastres relacionados a perigos geológicos. In Proceedings of the XIV Simpósio de Geologia do Sudeste, Campos do Jordão, Brazil, 26–29 October 2015. [Google Scholar]
- Gramani, M.; Martins, V. Debris flows occurrence by intense rains at Itaoca city, São Paulo, Brazil: Field observations. In Landslides and Engineered Slopes: Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2016; pp. 1011–1019. [Google Scholar]
- Dias, V.C.; McDougall, S.; Vieira, B.C. Geomorphic analyses of two recent debris flows in Brazil. J. S. Am. Earth Sci. 2022, 113, 103675. [Google Scholar] [CrossRef]
- Dantas, M.E. Geomorfologia do Estado do Rio de Janeiro: Estudo Geoambiental do Estado do Rio de Janeiro; CPRM: Brasília, Brazil, 2001.
- Tupinambá, M.; Heilbron, M.; Duarte, B.P.; de Almeida, J.C.H.; Valladares, C.S.; Pacheco, B.T.; dos Santos Salomão, M.; Conceição, F.R.; da Silva, L.G.E.; de Almeida, C.G.; et al. Mapa Geológico Folha Nova Friburgo SF-23-Z-B-II; Technical Report; CPRM—Serviço Geológico do Brasil: Belo Horizonte, Brazil, 2012.
- Planet. Planet Imagery Products Specifications; Planet Labs: San Francisco, CA, USA, 2022. [Google Scholar]
- Bhandari, A.K.; Kumar, A.; Singh, G.K. Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City. Procedia Technol. 2012, 6, 612–621. [Google Scholar] [CrossRef]
- Uehara, T.D.T.; Corrêa, S.P.L.P.; Quevedo, R.P.; Körting, T.S.; Dutra, L.V.; Rennó, C.D. Landslide Scars Detection using Remote Sensing and Pattern Recognition Techniques: Comparison among Artificial Neural Networks, Gaussian Maximum Likelihood, Random Forest, and Support Vector Machine Classifiers. Rev. Bras. Cartogr. 2020, 72, 665–680. [Google Scholar] [CrossRef]
- ASF DAAC. ALOS PALSAR Radiometric Terrain Corrected High Res; Includes Material JAXA/METI 2011; Technical Report; Alaska Satellite Facility: Fairbanks, AK, USA, 2020. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. PRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Rosenfield, G.; Fitzptrik-Lins, K.; Ling, S. Sampling for thematicmap accuracy testing. Photogramm. Eng. Remote Sens. 1982, 48, 131–137. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Eisank, C.; Smith, M.; Hillier, J. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models. Geomorphology 2014, 214, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Hölbling, D.; Betts, H.; Spiekermann, R.; Phillips, C. Identifying Spatio-Temporal Landslide Hotspots on North Island, New Zealand, by Analyzing Historical and Recent Aerial Photography. Geosciences 2016, 6, 48. [Google Scholar] [CrossRef]
- Peruccacci, S.; Gariano, S.L.; Melillo, M.; Solimano, M.; Guzzetti, F.; Brunetti, M.T. The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy. Earth Syst. Sci. Data 2023, 15, 2863–2877. [Google Scholar] [CrossRef]
- Garcia, G.P.B.; Soares, L.P.; Espadoto, M.; Grohmann, C.H. Relict landslide detection using deep-learning architectures for image segmentation in rainforest areas: A new framework. Int. J. Remote Sens. 2023, 44, 2168–2195. [Google Scholar] [CrossRef]
- Marcelino, E.V.; Formaggio, A.R.; Maeda, E.E. Landslide inventory using image fusion techniques in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 181–191. [Google Scholar] [CrossRef]
- Eisank, C.; Hölbling, D.; Friedl, B.; Chen, Y.C.; Chang, K.T. Expert knowledge for object-based landslide mapping in Taiwan. South-East. Eur. J. Earth Obs. Geomat. 2014, 3, 347–350. [Google Scholar]
- Gerrard, A.J. Rocks and Landforms; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar] [CrossRef]
- Lin, C.C.; Gramani, M.F.; de Campos, A.B. Levantamento das cicatrizes de deslizamentos na bacia do Rio Gurutuba (SP) e correlações com parâmetros físicos. In Proceedings of the XVIII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, Belo Horizonte, Brazil, 19–22 October 2016. [Google Scholar]
- Fernandes, N.F.; Guimarães, R.F.; Gomes, R.A.T.; Vieira, B.C.; Montgomery, D.R.; Greenberg, H. Condicionantes Geomorfológicos dos Deslizamentos nas Encostas: Avaliação de Metodologias e Aplicação de Modelo de Previsão de Áreas Susceptíveis. Rev. Bras. Geomorfol. 2001, 2, 51–71. [Google Scholar] [CrossRef]
- Dias, H.C.; Dias, V.C.; Vieira, B.C. Condicionantes Morfológicos e Geológicos dos Escorregamentos Rasos na Bacia do Rio Santo Antônio, Caraguatatuba/SP. Rev. Dep. Geogr. 2017, 157–163. [Google Scholar] [CrossRef]
- Martins, T.D.; Oka-Fiori, C.; Vieira, B.C.; de Barros Correa, A.C.; Bateira, C.V.M. Análise dos parâmetros morfológicos de escorregamentos rasos na Serra do Mar, Paraná. Caminhos Geogr. 2017, 18, 223–239. [Google Scholar] [CrossRef]
- Alves, G.J.; Mello, C.R.; Guo, L. Rainfall disasters under the changing climate: A case study for the Rio de Janeiro mountainous region. Nat. Hazards 2023, 116, 1539–1556. [Google Scholar] [CrossRef]
Dataset | Source | Scale/Resolution | Description |
---|---|---|---|
Satellite imagery | RapidEye | 5 m | Five multispectral bands (blue, red, green, red edge, and near-infrared). Acquisition dates: 30 January 2014 (SP); 20 January 2011 (RJ) |
DEM | ALOS | 12.5 m | Parameters used: slope, curvature, flow accumulation. Format: raster. |
Drainage network | IGC-SP | 1:10,000 | Geographic and Cartographic Institute of the State of São Paulo. Format: vector. |
ANA | 1:25,000 | National Water and Basic Sanitation Agency. Format: vector. |
Study Area | Classification Parameters |
---|---|
Itaóca | Mean NDVI Mean slope Distance from drainage network m Border to drainage network m |
Nova Friburgo | Mean NDVI Mean slope Distance from drainage network m Border to drainage network m |
Spectral | NDVI | High Frequency: –; Min: /Max: |
Morphology | Slope degree | High frequency: 15–30°; Min: 5.6°/Max: 59.8° |
Elevation | High frequency: 300–600 m; Min: /Max: m | |
Curvature | High frequency: –; Min: /Max: |
Spatial Accuracy Metrics | Northern Sector | Central and Southern Sector |
---|---|---|
QR | 0.52 | 0.59 |
AFI | 0.23 | 0.20 |
OS | 0.43 | 0.48 |
US | 0.25 | 0.35 |
D | 0.35 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, H.C.; Hölbling, D.; Grohmann, C.H. Rainfall-Induced Shallow Landslide Recognition and Transferability Using Object-Based Image Analysis in Brazil. Remote Sens. 2023, 15, 5137. https://doi.org/10.3390/rs15215137
Dias HC, Hölbling D, Grohmann CH. Rainfall-Induced Shallow Landslide Recognition and Transferability Using Object-Based Image Analysis in Brazil. Remote Sensing. 2023; 15(21):5137. https://doi.org/10.3390/rs15215137
Chicago/Turabian StyleDias, Helen Cristina, Daniel Hölbling, and Carlos Henrique Grohmann. 2023. "Rainfall-Induced Shallow Landslide Recognition and Transferability Using Object-Based Image Analysis in Brazil" Remote Sensing 15, no. 21: 5137. https://doi.org/10.3390/rs15215137
APA StyleDias, H. C., Hölbling, D., & Grohmann, C. H. (2023). Rainfall-Induced Shallow Landslide Recognition and Transferability Using Object-Based Image Analysis in Brazil. Remote Sensing, 15(21), 5137. https://doi.org/10.3390/rs15215137