MADANet: A Lightweight Hyperspectral Image Classification Network with Multiscale Feature Aggregation and a Dual Attention Mechanism
Abstract
:1. Introduction
- (1)
- A lightweight hyperspectral image classification method is proposed based on multiscale feature aggregation and a dual attention mechanism, which can achieve good performance quickly with low computational consumption.
- (2)
- We introduce an applicable unit: the multiscale aggregation unit (MA unit). The MA unit first captures multiscale spatial context information through multilayer deep convolution and then performs nonlinear fusion using the Hadamard product to cope with the “neighboring pixel effect” in hyperspectral images. This unit provides new perspectives and methods for hyperspectral image feature extraction.
- (3)
- To assess the generalization and advantages of the proposed method, experiments were conducted across various scenarios encompassing three agricultural contexts and one urban setting. The experimental results consistently illustrate that our method outperforms other state-of-the-art approaches in all tested scenarios.
2. Related Work
2.1. ShuffleNet
2.2. Attention Mechanism
3. Methodology
3.1. Overall Architecture
3.2. MA Unit
3.3. Feature Fusion and Classification
4. Results
4.1. Data Description
4.2. Experimental Design
4.3. Experimental Results
4.3.1. Experimental Results on the Indian Pines Dataset
4.3.2. Experimental Results on the University of Pavia Dataset
4.3.3. Experimental Results on the Salinas Dataset
4.3.4. Experimental Results on the WHU-Hi-LongKou Dataset
4.3.5. Parameter Analysis
4.3.6. Ablation Experiments
4.3.7. Evaluation of Model Complexity
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, Y.; Lu, L.; Bruzzone, L.; Guan, R.; Chang, Z.; Yang, C. Hyperspectral Band Selection for Lithologic Discrimination and Geological Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 471–486. [Google Scholar] [CrossRef]
- Oehlschläger, J.; Schmidhalter, U.; Noack, P.O. UAV-Based Hyperspectral Sensing for Yield Prediction in Winter Barley. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Alias, M.S.; Adnan, A.M.I.; Jugah, K.; Ishaq, I.; Fizree, Z.A. Detection of Basal Stem Rot (BSR) disease at oil palm plantation using hyperspectral imaging. In Proceedings of the 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, USA, 26–28 June 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Wan, Y.; Hu, X.; Zhong, Y.; Ma, A.; Wei, L.; Zhang, L. Tailings Reservoir Disaster and Environmental Monitoring Using the UAV-ground Hyperspectral Joint Observation and Processing: A Case of Study in Xinjiang, the Belt and Road. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9713–9716. [Google Scholar] [CrossRef]
- Odagawa, S.; Takeda, T.; Yamano, H.; Matsunaga, T. Bottom-type classification in coral reef area using hyperspectral bottom index imagery. In Proceedings of the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Taşkın, G.; Kaya, H.; Bruzzone, L. Feature Selection Based on High Dimensional Model Representation for Hyperspectral Images. IEEE Trans. Image Process. 2017, 26, 2918–2928. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Yuan, Y.; Li, N.; Liao, J.; Huang, Q.; Jia, X.; Xu, M. A Multiscale Superpixel-Level Group Clustering Framework for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5523418. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Y.; Wang, F.; Song, M.; Chang, C.-I. Hyperspectral Band Selection Based on Improved Affinity Propagation. In Proceedings of the 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Manzanarez, S.D.; Manian, V. Supervised Spatially Coherent Nonlinear Dimensionality Reduction for Hyperspectral Image Classification. In Proceedings of the 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Gong, J.; Liu, W.; Pei, M.; Wu, C.; Guo, L. ResNet10: A lightweight residual network for remote sensing image classification. In Proceedings of the 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 15–16 January 2022; pp. 975–978. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Twenty-Sixth Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates Inc.: Red Hook, NY, USA, 2012. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2017; pp. 4700–4708. [Google Scholar]
- Alipourfard, T.; Arefi, H.; Mahmoudi, S. A Novel Deep Learning Framework by Combination of Subspace-Based Feature Extraction and Convolutional Neural Networks for Hyperspectral Images Classification. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4780–4783. [Google Scholar] [CrossRef]
- Li, K.; Ma, Z.; Xu, L.; Chen, Y.; Ma, Y.; Wu, W.; Wang, F.; Liu, Z. Depthwise Separable ResNet in the MAP Framework for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5500305. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep Pyramidal Residual Networks for Spectral–Spatial Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 740–754. [Google Scholar] [CrossRef]
- Liu, X.; Meng, Y.; Fu, M. Classification Research Based on Residual Network for Hyperspectral Image. In Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 19–21 July 2019; pp. 911–915. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Xu, L.; Wei, Q.; Wang, F.; Chen, Y. A Depthwise Separable Fully Convolutional ResNet With ConvCRF for Semisupervised Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4621–4632. [Google Scholar] [CrossRef]
- Li, A.; Shang, Z. A new Spectral-Spatial Pseudo-3D Dense Network for Hyperspectral Image Classification. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Cui, B.; Li, X.; Wu, J.; Ren, G.; Lu, Y. Tiny-Scene Embedding Network for Coastal Wetland Mapping Using Zhuhai-1 Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2504105. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G.; Du, S. Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9201–9222. [Google Scholar] [CrossRef]
- Dong, W.; Qu, J.; Zhang, T.; Li, Y.; Du, Q. Context-Aware Guided Attention Based Cross-Feedback Dense Network for Hyperspectral Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5530814. [Google Scholar] [CrossRef]
- Meng, Z.; Jiao, L.; Liang, M.; Zhao, F. A Lightweight Spectral-Spatial Convolution Module for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5505105. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. arXiv 2019, arXiv:1905.02244. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Lecture Notes in Computer Science. Volume 11218. [Google Scholar]
- Yuan, Z.; Lu, C. Research on Image Classification of Lightweight Convolutional Neural Network. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 498–501. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, H.; Xu, Z.; Zheng, K.; Gao, L. A Novel Classification Framework for Hyperspectral Image Classification Based on Multi-Scale Dense Network. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2238–2241. [Google Scholar] [CrossRef]
- Yang, J.; Du, B.; Wu, C.; Zhang, L. Automatically Adjustable Multi-Scale Feature Extraction Framework for Hyperspectral Image Classification. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3649–3652. [Google Scholar] [CrossRef]
- Guan, L.; Han, Y.; Zhang, P. Hyperspectral image classification based on improved multi-scale residual network structure. In Proceedings of the 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), Nanjing, China, 6–8 August 2021; pp. 377–382. [Google Scholar] [CrossRef]
- Lin, M.; Jing, W.; Di, D.; Chen, G.; Song, H. Multi-Scale U-Shape MLP for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6006105. [Google Scholar] [CrossRef]
- Shang, R.; Chang, H.; Zhang, W.; Feng, J.; Li, Y.; Jiao, L. Hyperspectral Image Classification Based on Multi-scale Cross-branch Response and Second-Order Channel Attention. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5532016. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803. [Google Scholar]
- Ren, Y.; Li, X.; Yang, X.; Xu, H. Development of a Dual-Attention U-Net Model for Sea Ice and Open Water Classification on SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4010205. [Google Scholar] [CrossRef]
- Wang, R.; Chen, Z.; Zhang, S.; Li, W. Dual-Attention Generative Adversarial Networks for Fault Diagnosis Under the Class-Imbalanced Conditions. IEEE Sens. J. 2022, 22, 1474–1485. [Google Scholar] [CrossRef]
- Liu, M.; Hu, Q.; Wang, C.; Tian, T.; Chen, W. Daff-Net: Dual Attention Feature Fusion Network for Aircraft Detection in Remote Sensing Images. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4196–4199. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sens. Environ. 2020, 250, 112012. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, G.; Li, X.; Wang, B. Cascaded random forest for hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2018, 11, 1082–1094. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Fang, L.; Lu, T. Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef]
- Ding, L.; Tang, H.; Bruzzone, L. LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 426–435. [Google Scholar] [CrossRef]
Class | SVM | RF | DFFN | HybridSN | A2MFE | LANet | MADANet |
---|---|---|---|---|---|---|---|
Alfalfa | 83.16 | 77.15 | 92.76 | 98.46 | 97.98 | 98.37 | 98.37 |
Corn-N | 66.73 | 70.24 | 89.36 | 96.40 | 95.32 | 91.64 | 96.98 |
Corn-M | 76.25 | 71.16 | 93.31 | 96.64 | 94.57 | 93.25 | 96.32 |
Corn | 80.64 | 76.69 | 94.47 | 95.05 | 91.34 | 90.51 | 95.57 |
Grass-P | 85.89 | 84.83 | 97.54 | 97.63 | 95.21 | 95.26 | 96.59 |
Grass-T | 92.41 | 89.27 | 98.11 | 98.54 | 94.72 | 98.17 | 98.65 |
Grass-P-M | 52.32 | 39.41 | 99.06 | 99.21 | 92.87 | 94.38 | 99.25 |
Hay-windrowed | 59.24 | 63.17 | 99.70 | 98.24 | 97.31 | 98.21 | 98.24 |
Oats | 62.24 | 60.17 | 96.02 | 96.72 | 96.35 | 96.93 | 97.44 |
Soybean-notill | 82.73 | 74.21 | 95.85 | 93.28 | 92.41 | 92.74 | 98.38 |
Soybean-mintill | 84.47 | 80.41 | 95.32 | 94.51 | 97.51 | 96.36 | 99.43 |
Soybean-clean | 66.11 | 64.04 | 84.78 | 99.29 | 97.45 | 93.14 | 97.65 |
Wheat | 89.68 | 88.26 | 98.77 | 98.72 | 96.89 | 98.59 | 99.19 |
Woods | 84.87 | 86.52 | 95.36 | 98.70 | 95.76 | 98.71 | 98.12 |
Buildings-G-T-D | 82.59 | 81.78 | 97.23 | 98.56 | 98.61 | 97.47 | 97.32 |
Stone-S-T | 86.57 | 84.43 | 92.03 | 97.21 | 96.25 | 96.44 | 98.26 |
OA (%) | 84.12 | 77.88 | 96.95 | 97.35 | 97.78 | 95.06 | 98.34 |
AA (%) | 82.76 | 76.14 | 95.65 | 97.92 | 97.24 | 96.23 | 98.12 |
Kappa | 0.8234 | 0.7606 | 0.9523 | 0.9613 | 0.9632 | 0.9542 | 0.9703 |
Class | SVM | RF | DFFN | HybridSN | A2MFE | LANet | MADANet |
---|---|---|---|---|---|---|---|
Asphalt | 94.96 | 94.83 | 95.30 | 98.90 | 98.89 | 94.70 | 99.04 |
Meadows | 88.14 | 90.28 | 91.42 | 99.21 | 98.72 | 98.89 | 99.32 |
Gravel | 24.62 | 88.54 | 96.96 | 97.27 | 96.57 | 97.42 | 98.24 |
Trees | 92.63 | 92.86 | 93.81 | 93.64 | 97.32 | 93.07 | 100.00 |
Metal Sheets | 91.74 | 91.79 | 98.63 | 99.60 | 99.71 | 98.43 | 99.42 |
Bare Soil | 42.68 | 67.39 | 89.25 | 98.89 | 97.56 | 95.56 | 99.55 |
Bitumen | 23.12 | 63.56 | 96.53 | 85.33 | 96.76 | 97.64 | 97.56 |
Bricks | 77.91 | 81.27 | 91.35 | 98.21 | 94.66 | 93.51 | 99.37 |
Shadows | 66.25 | 75.79 | 96.69 | 95.27 | 96.45 | 90.37 | 100.00 |
OA (%) | 80.43 | 87.85 | 94.31 | 98.06 | 98.43 | 95.92 | 99.13 |
AA (%) | 79.63 | 86.23 | 93.88 | 96.49 | 97.21 | 94.14 | 98.93 |
Kappa | 0.7821 | 0.8612 | 0.9472 | 0.9642 | 0.9646 | 0.9456 | 0.9812 |
Class | SVM | RF | DFFN | HybridSN | A2MFE | LANet | MADANet |
---|---|---|---|---|---|---|---|
weeds_1 | 98.47 | 97.24 | 98.23 | 99.30 | 99.46 | 98.32 | 99.64 |
weeds_2 | 97.15 | 98.37 | 98.43 | 99.96 | 97.28 | 98.64 | 98.95 |
Fallow | 92.31 | 87.36 | 95.32 | 98.16 | 97.99 | 95.09 | 98.90 |
Fallow-P | 92.27 | 88.42 | 95.27 | 98.05 | 95.67 | 98.01 | 97.58 |
Fallow-S | 96.11 | 97.13 | 96.23 | 98.42 | 98.85 | 98.73 | 99.02 |
Stubble | 92.12 | 92.22 | 94.58 | 98.67 | 98.31 | 98.86 | 98.01 |
Celery | 89.28 | 89.53 | 96.17 | 98.96 | 95.76 | 97.04 | 99.34 |
Grapes | 90.84 | 90.78 | 91.13 | 92.70 | 97.82 | 96.49 | 97.77 |
Soil | 77.56 | 62.26 | 97.65 | 98.53 | 97.56 | 93.11 | 98.23 |
Corn | 96.45 | 93.65 | 93.61 | 95.44 | 95.23 | 94.27 | 95.91 |
Lettuce_4wk | 76.16 | 79.67 | 93.78 | 98.08 | 97.45 | 97.19 | 98.86 |
Lettuce_5wk | 87.02 | 92.34 | 91.98 | 99.33 | 98.34 | 98.42 | 99.23 |
Lettuce_6wk | 85.16 | 91.36 | 95.12 | 99.02 | 99.21 | 98.58 | 100.00 |
Lettuce_7wk | 82.46 | 85.69 | 90.97 | 98.21 | 98.12 | 98.07 | 99.34 |
Vineyard_U | 72.39 | 68.22 | 87.71 | 92.29 | 94.55 | 92.46 | 98.49 |
Vineyard_T | 89.43 | 88.76 | 91.59 | 80.43 | 93.23 | 90.11 | 98.36 |
OA (%) | 87.53 | 90.45 | 95.69 | 97.05 | 98.56 | 96.67 | 99.17 |
AA (%) | 88.92 | 91.23 | 96.72 | 97.52 | 98.72 | 97.12 | 99.12 |
Kappa | 0.8689 | 0.8916 | 0.9536 | 0.9672 | 0.9735 | 0.9639 | 0.9834 |
Class | SVM | RF | DFFN | HybridSN | A2MFE | LANet | MADANet |
---|---|---|---|---|---|---|---|
Corn | 93.56 | 92.85 | 99.74 | 99.23 | 99.72 | 98.47 | 99.89 |
Cotton | 83.21 | 82.98 | 99.09 | 73.67 | 98.56 | 88.46 | 98.72 |
Sesame | 81.52 | 81.30 | 89.25 | 56.72 | 92.34 | 81.13 | 98.83 |
Broad-leaf-S | 76.39 | 74.21 | 98.03 | 95.64 | 98.87 | 96.39 | 99.56 |
Narrow-leaf-S | 63.33 | 60.75 | 75.57 | 56.49 | 98.97 | 85.48 | 99.26 |
Rice | 91.24 | 89.72 | 98.10 | 92.54 | 99.37 | 88.52 | 99.13 |
Water | 89.76 | 96.61 | 95.80 | 98.91 | 99.53 | 99.76 | 99.64 |
Roads and houses | 75.63 | 76.82 | 75.98 | 82.23 | 96.69 | 82.95 | 96.34 |
Mixed weed | 76.63 | 72.32 | 71.56 | 92.51 | 94.67 | 81.53 | 94.23 |
OA (%) | 91.05 | 88.72 | 97.80 | 96.08 | 98.46 | 95.77 | 99.08 |
AA (%) | 88.79 | 86.56 | 92.92 | 84.85 | 97.96 | 89.19 | 98.72 |
Kappa | 0.8972 | 0.8725 | 0.9711 | 0.9413 | 0.9832 | 0.9446 | 0.9894 |
Datasets | DA Unit | MA Unit | OA (%) | AA (%) | Kappa |
---|---|---|---|---|---|
Indian Pines | 93.59 | 94.37 | 0.9312 | ||
√ | 96.74 | 96.88 | 0.9577 | ||
√ | 95.33 | 95.50 | 0.9498 | ||
√ | √ | 98.34 | 98.12 | 0.9703 | |
University of Pavia | 95.45 | 95.12 | 0.9429 | ||
√ | 97.42 | 96.53 | 0.9587 | ||
√ | 98.31 | 97.97 | 0.9724 | ||
√ | √ | 99.13 | 98.93 | 0.9812 | |
Salinas | 95.72 | 96.21 | 0.9531 | ||
√ | 97.77 | 97.84 | 0.9706 | ||
√ | 97.15 | 97.16 | 0.9655 | ||
√ | √ | 99.17 | 99.12 | 0.9834 | |
WHU-Hi-LongKou | 95.41 | 96.67 | 0.9501 | ||
√ | 98.64 | 98.55 | 0.9827 | ||
√ | 97.45 | 97.32 | 0.9745 | ||
√ | √ | 99.08 | 98.72 | 0.9894 |
Method | Test Time—CPU (s) | Test Time—GPU (s) | Parameters (M) |
---|---|---|---|
SVM | 1.59 | 1.44 | - |
RF | 0.24 | 0.21 | - |
DFFN | 11.05 | 2.34 | 0.14 |
HybridSN | 150.18 | 4.93 | 12.59 |
A2MFE | 14.23 | 2.78 | 0.35 |
LANet | 109.23 | 4.46 | 2.05 |
MADANet | 12.02 | 2.52 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, B.; Wen, J.; Song, X.; He, J. MADANet: A Lightweight Hyperspectral Image Classification Network with Multiscale Feature Aggregation and a Dual Attention Mechanism. Remote Sens. 2023, 15, 5222. https://doi.org/10.3390/rs15215222
Cui B, Wen J, Song X, He J. MADANet: A Lightweight Hyperspectral Image Classification Network with Multiscale Feature Aggregation and a Dual Attention Mechanism. Remote Sensing. 2023; 15(21):5222. https://doi.org/10.3390/rs15215222
Chicago/Turabian StyleCui, Binge, Jiaxiang Wen, Xiukai Song, and Jianlong He. 2023. "MADANet: A Lightweight Hyperspectral Image Classification Network with Multiscale Feature Aggregation and a Dual Attention Mechanism" Remote Sensing 15, no. 21: 5222. https://doi.org/10.3390/rs15215222
APA StyleCui, B., Wen, J., Song, X., & He, J. (2023). MADANet: A Lightweight Hyperspectral Image Classification Network with Multiscale Feature Aggregation and a Dual Attention Mechanism. Remote Sensing, 15(21), 5222. https://doi.org/10.3390/rs15215222