The Impact of Meteorological Conditions and Emissions on Tropospheric Column Ozone Trends in Recent Years
Abstract
:1. Introduction
2. Data and Methods
2.1. Satellite Data
2.2. Trend Calculation
2.3. Model and Experiments
3. Results
3.1. Distribution and Trend of Tropospheric Column Ozone
3.2. Seasonal Trend of Tropospheric Column Ozone
3.3. Impact of Stratospheric Intrusion to the Trend of TCO
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, G.; Tan, Y.K.; Li, C.Y.; Chen, S.C.; Bai, T.; Yang, D.Y.; Zhang, Y. The distribution characteristics of total ozone and its relationship with stratospheric temperature during boreal winter in the recent 30 years. Chin. J. Geophys. 2015, 58, 1475–1491. (In Chinese) [Google Scholar]
- Wild, O. Modelling the global tropospheric ozone budget: Exploring the variability in current models. Atmos. Chem. Phys. 2007, 7, 2643–2660. [Google Scholar]
- Gaudel, A.; Cooper, O.R.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, J.P.; Clerbaux, C.; Coheur, P.F.; Cuesta, J.; Cuevas, E.; et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anthr. 2018, 6, 39. [Google Scholar]
- Mehmood, T.; Hassan, M.A.; Li, X.H.; Ashraf, A.; Rehman, S.; Bilal, M.; Obodo, R.M.; Mustafa, B.; Shaz, M.; Bibi, S.; et al. Mechanism behind Sources and Sinks of Major Anthropogenic Greenhouse Gases. In Climate Change Alleviation for Sustainable Progression: Floristic Prospects and Arboreal Avenues as a Viable Sequestration Tool; Dervash, M.A., Wani, A.A., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 114–150. [Google Scholar]
- Tian, H.; Ren, W.; Tao, B.; Chappelka, A.; Wang, X.; Pan, S.; Yang, J.; Liu, J.; Ben, S.; Jerry, M.; et al. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems. Glob. Ecol. Biogeogr. 2011, 20, 391–406. [Google Scholar]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorogical influences, chemical precursors, and effects. Sci. Total Environ. 2016, 575, 1582–1596. [Google Scholar] [PubMed]
- Ziemke, J.R.; Oman, L.D.; Strode, S.A.; Douglass, A.R.; Taylor, S.L. Trends in global tropospheric ozone inferred from a composite record of toms/omi/mls/omps satellite measurements and the merra-2 gmi simulation. Atmos. Chem. Phys. 2019, 19, 3257–3269. [Google Scholar]
- Zhang, Y.; Cooper, O.R.; Gaudel, A.; Philippe, N.; Ogino, S.; Anne, M.T.; West, J.J. Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions. Nat. Geosci. 2016, 9, 875–879. [Google Scholar]
- Ziemke, J.R.; Chandra, S.; Bhartia, P.K. A 25-year data record of atmospheric ozone in the Pacific from Total Ozone Mapping Spectrometer (TOMS)cloud slicing: Implications for ozone trends in the stratosphere and troposphere. J. Geophys. Res. Atmos. 2005, 110, D15105. [Google Scholar]
- Lal, D.M.; Ghude, S.D.; Patil, S.D.; Kulkarni, S.H.; Jena, C.; Tiwari, S.; Srivastava, M.K. Tropospheric ozone aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmos. Res. 2012, 116, 82–92. [Google Scholar]
- Kulkarni, P.S.; Bortoli, D.; Salgado, R.; Antón, M.; Costa, M.J.; Silva, A.M. Tropospheric ozone variability over the Iberian Peninsula. Atmos. Environ. 2011, 45, 174–182. [Google Scholar]
- Kulkarni, P.S.; Jain, S.L.; Ghude, S.D.; Arya, B.C.; Dubey, P.K.; Shahnawaz. On some aspects of tropospheric ozone variability over the Indo-Gangetic (IG) basi, India. Int. J. Remote Sens. 2009, 30, 4111–4122. [Google Scholar]
- Lin, M.; Horowitz, L.W.; Payton, R.; Fiore, A.M.; Tonnesen, G. US surface ozone trends and extremes from 1980 to 2014: Quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmos. Chem. Phys. 2017, 17, 2943–2970. [Google Scholar]
- Oltmans, S.J.; Lefohn, A.S.; Shadwick, D.; Harris, J.M.; Scheel, H.E.; Galbally, I.; Tarasick, D.W.; Johnson, B.J.; Brunke, E.G.; Claude, H.; et al. Recent tropospheric ozone change—A pattern dominated by slow or no growth. Atmos. Environ. 2013, 67, 331–351. [Google Scholar]
- Parrish, D.D.; Law, K.S.; Staehelin, J.; Derwent, R.; Cooper, O.R.; Tanimoto, H.; Volz-Thomas, A.; Gilge, S.; Scheel, H.E.; Steinbacher, M.; et al. Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. Atmos. Chem. Phys. 2012, 12, 13881–13931. [Google Scholar]
- Parrish, D.D.; Derwent, R.G.; Staehelin, J. Long-term changes in northern mid-latitude tropospheric ozone concentrations: Synthesis of two recent analyses. Atmos. Environ. 2021, 248, 118–227. [Google Scholar]
- Cooper, O.R.; Parrish, D.D.; Ziemke, J.; Balashow, N.V.; Cupeiro, M. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anthr. 2014, 2, 2–29. [Google Scholar]
- Anet, J.G.; Steinbacher, M.; Gallardo, L.; Patricio, A.; Álvarez, V.; Emmenegger, L.; Buchmann, B. Surface ozone in the southern hemisphere: 20 years of data from a site with a unique setting in El Tololo, Chile. Atmos. Chem. Phys. 2017, 17, 6477–6492. [Google Scholar]
- Lu, X.; Zhang, L.; Zhao, Y.; Daniel, J.J.; Hu, Y.; Hu, L.; Gao, M.; Liu, X.; Petropavlovskikh, I.; Audra, M.B.; et al. Surface and tropospheric ozone trends in the Southern Hemisphere since 1990: Possible linkages to poleward expansion of the Hadley circulation. Sci. Bull. 2019, 64, 400–409. [Google Scholar]
- Hassan, M.A.; Faheem, M.; Mehmood, T.; Yin, Y.; Liu, J. Assessment of meteorological and air quality drivers of elevated ambient ozone in Beijing via machine learning approach. Environ. Sci. Pollut. Res. 2023, 30, 104086–104099. [Google Scholar]
- Ziemke, J.R.; Chandra, S.; Duncan, B.N.; Froidevaux, L.; Bhartia, P.F.; Levelt, P.F.; Waters, J.W. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative Chemical Transport Model. J. Geophys. Res. 2006, 111, 193–203. [Google Scholar]
- Esterby, S.R. Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrol. Process. 1996, 10, 127–149. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 163–171. [Google Scholar]
- Lv, X.; Hou, X.W.; Lu, W. Numerical simulation of the impact of intercontinental transmission on tropospheric ozone in China. China Environ. Sci. 2021, 41, 537–547. (In Chinese) [Google Scholar]
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; Marco, A.D.; Paoletti, E.; Calatayud, E. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023, 858, 160064. [Google Scholar]
- Tian, H.; Tian, W.; Luo, J.; Zhang, J.; Yang, Q.; Huang, Q. Characteristics of Water Vapor Distribution and Variation in Upper Troposphere and Lower Stratosphere over Qinghai-Xizang Plateau. Plateau Meteorol. 2014, 33, 1–13. (In Chinese) [Google Scholar]
EXP | MET+EMIS | MET+2015EMIS |
---|---|---|
Model | CESM2.2.0 | CESM2.2.0 |
Year | 2001~2015 | 2001~2020 |
Emission | Dynamic emission inventory | Fixed emission inventory, 2015 |
Resolution | 1.9° × 2.5° | 1.9° × 2.5° |
Level | 56 | 56 |
Component | FCSD | FCSD |
Chemical mechanism | troposphere/stratosphere chemistry with simplified VBS-SOA, MOZART-TS1 | |
Spin-up | 2000 | 2000 |
Slope (DU/yr) | NAM | EAS | SAM | AFR | EUR | SEA |
---|---|---|---|---|---|---|
OMI/MLS | 0.15 * | 0.23 * | 0.13 * | 0.07 * | 0.13 * | 0.21 * |
MET+EMIS | 0.03 * | 0.13 * | −0.07 | 0.08 * | −0.01 | 0.23 * |
MET+2015EMIS | 0.01 | −0.01 | −0.07 * | 0.04 | −0.02 * | 0.09 * |
Slope (DU/yr) | NAM | EAS | SAM | AFR | EUR | SEA | |
---|---|---|---|---|---|---|---|
Jan. | OMI | 0.15 * | 0.19 * | 0.23 | 0.08 | 0.17 * | 0.25 * |
MET+EMIS | 0.05 | 0.10 * | 0.02 | 0.12 * | 0.02 | 0.22 * | |
MET+2015EMIS | 0.00 | 0.04 | −0.10 | 0.05 | 0.04 | 0.12 | |
Apr. | OMI | 0.11 * | 0.23 * | 0.12 * | 0.06 | 0.10 | 0.20 * |
MET+EMIS | 0.00 | 0.09 | −0.12 * | 0.13 * | 0.02 | 0.18 * | |
MET+2015EMIS | −0.07 | −0.06 * | −0.07 * | 0.05 | −0.05 * | 0.07 | |
Jul. | OMI | 0.18 * | 0.25 * | 0.09 | 0.06 | 0.09 | 0.15 * |
MET+EMIS | −0.06 | 0.22 * | −0.08 | 0.22 * | −0.06 | 0.20 * | |
MET+2015EMIS | 0.02 | −0.06 * | −0.06 | 0.07 | −0.03 | 0.02 | |
Oct. | OMI | 0.20 * | 0.31 * | 0.10 | 0.03 | 0.17 * | 0.32 * |
MET+EMIS | 0.08 | 0.15 * | −0.16 * | 0.04 | 0.02 | 0.28 * | |
MET+2015EMIS | 0.07 | 0.06 | −0.15 * | 0.04 | 0.04 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Zhang, Y.; Lv, X.; Lee, J. The Impact of Meteorological Conditions and Emissions on Tropospheric Column Ozone Trends in Recent Years. Remote Sens. 2023, 15, 5293. https://doi.org/10.3390/rs15225293
Hou X, Zhang Y, Lv X, Lee J. The Impact of Meteorological Conditions and Emissions on Tropospheric Column Ozone Trends in Recent Years. Remote Sensing. 2023; 15(22):5293. https://doi.org/10.3390/rs15225293
Chicago/Turabian StyleHou, Xuewei, Yifan Zhang, Xin Lv, and James Lee. 2023. "The Impact of Meteorological Conditions and Emissions on Tropospheric Column Ozone Trends in Recent Years" Remote Sensing 15, no. 22: 5293. https://doi.org/10.3390/rs15225293
APA StyleHou, X., Zhang, Y., Lv, X., & Lee, J. (2023). The Impact of Meteorological Conditions and Emissions on Tropospheric Column Ozone Trends in Recent Years. Remote Sensing, 15(22), 5293. https://doi.org/10.3390/rs15225293