Dynamics of Spring Snow Cover Variability over Northeast China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. The Leading Mode of Spring Snow Cover Anomaly over NEC
4.2. Mechanisms of the Spring Snow Cover Variability over NEC
4.2.1. Effect of the Polar–Eurasia Pattern
4.2.2. Impact of the North Atlantic SST Anomaly
5. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Chen, Y.; Wang, Q. Cultivated Land Resources and Grain Production Potential in the Three Northeast Provinces. Chin. J. Soil Sci. 2017, 48, 1055–1060. (In Chinese) [Google Scholar]
- Han, D.; Zhao, J.; Hu, Q. Study on the change characteristics of food crop yield in Northeast China and its response to meteorological drought. J. China Agricul. Uni. 2021, 26, 188–200. (In Chinese) [Google Scholar]
- Zhen, Z.; Chen, S.; Yin, T.; Gastellu-Etchegorry, J.-P. Improving Crop Mapping by Using Bidirectional Reflectance Distribution Function (BRDF) Signatures with Google Earth Engine. Remote Sens. 2023, 15, 2761. [Google Scholar] [CrossRef]
- Qi, W.; Feng, L.; Liu, J.; Yang, H. Snow as an important natural reservoir for runoff and soil moisture in Northeast China. J. Geophys. Res. Atmos. 2020, 125, e2020JD033086. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Li, T.; Fu, Q.; Liu, D.; Hou, R.; Meng, F.; Li, M.; Li, Q. Responses of spring soil moisture of different land use type to snow cover in Northeast China under climate change background. J. Hydrol. 2022, 608, 127610. [Google Scholar] [CrossRef]
- Barnett, T.P.; Dumenil, L.; Schlese, U.; Roeckner, E.; Latif, M. The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci. 1989, 46, 661–685. [Google Scholar] [CrossRef]
- Cohen, J.; Rind, D. The Effect of Snow Cover on the Climate. J. Clim. 1991, 4, 689–706. [Google Scholar] [CrossRef]
- Wu, R.; Zhao, P.; Liu, G. Change in the contribution of spring snow cover and remote oceans to summer air temperature anomaly over Northeast China around 1990. J. Geophys. Res. Atmos. 2014, 119, 663–676. [Google Scholar] [CrossRef]
- Halder, S.; Dirmeyer, P.A. Relation of Eurasian snow cover and Indian summer monsoon rainfall: Importance of the delayed hydrological effect. J. Clim. 2017, 30, 1273–1289. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, T.; Feng, Y.; Li, X.; Krinner, G. An emerging impact of Eurasian spring snow cover on summer rainfall in Eastern China. Env. Res. Lett. 2021, 16, 054012. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, H.; Zhu, S.; Zhang, J.; Wei, J. Influence of the Eurasian spring snowmelt on summer land surface warming over Northeast Asia and its associated mechanism. J. Clim. 2021, 34, 4851–4869. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Q.; Xie, H.; Zhang, H.; Lu, P.; Zhou, C. Spatiotemporal variations of snow cover in northeast China based on flexible multiday combinations of moderate resolution imaging spectroradiometer snow cover products. J. Appl. Remote Sens. 2014, 8, 084685. [Google Scholar] [CrossRef]
- Ma, N.; Yu, K.; Zhang, Y.; Zhai, J.; Zhang, Y.; Zhang, H. Ground observed climatology and trend in snow cover phenology across China with consideration of snow-free breaks. Clim. Dyn. 2020, 55, 2867–2887. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Z. Spatial Representativeness Analysis for Snow Depth Measurements of Meteorological Stations in Northeast China. J. Hydrometeorol. 2020, 21, 791–805. [Google Scholar] [CrossRef]
- Zou, Y.; Sun, P.; Ma, Z.; Lv, Y.; Zhang, Q. Snow Cover in the Three Stable Snow Cover Areas of China and Spatio-Temporal Patterns of the Future. Remote Sens. 2022, 14, 3098. [Google Scholar] [CrossRef]
- Zhang, X.; Zang, S.; Sun, L. Spatial-temporal variation characteristics of snow cover days in Northeast China in the past 40 years and their relationship with climatic factors. Adv. Earth Sci. 2018, 33, 958–968. (In Chinese) [Google Scholar]
- Zhou, X.; Zhao, C.; Li, N. Spatiotemporal Variation of Snow and its Response to Climate Change in Northeast China. Plateau Meteor. 2021, 40, 875–886. (In Chinese) [Google Scholar]
- Lu, Q.; Li, B.; Wang, Z. The relationship between spatial and temporal change of snow cover depth and atmospheric circulation in Northeast China from 1979 to 2014. J. Glaciol. Geocryol. 2018, 40, 907–915. (In Chinese) [Google Scholar]
- Guo, H.; Wang, X.; Guo, Z.; Chen, S. Assessing Snow Phenology and Its Environmental Driving Factors in Northeast China. Remote Sens. 2022, 14, 262. [Google Scholar] [CrossRef]
- Henderson, G.R.; Leathers, D.J. European snow cover extent variability and associations with atmospheric forcings. Int. J. Climatol. 2010, 30, 1440–1451. [Google Scholar] [CrossRef]
- Seager, R.; Kushnir, Y.; Nakamura, J.; Ting, M.; Naik, N. Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett. 2010, 37, L14703. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, K.-Y.; Kim, B.-M. Physical mechanisms of European winter snow cover variability and its relationship to the NAO. Clim. Dyn. 2013, 40, 1657–1669. [Google Scholar] [CrossRef]
- Wegmann, M.; Rohrer, M.; Santolaria-Otín, M.; Lohmann, G. Eurasian autumn snow link to winter North Atlantic Oscillation is strongest for Arctic warming periods. Earth Syst. Dynam. 2020, 11, 509–524. [Google Scholar] [CrossRef]
- Gastineau, G.; García-Serrano, J.; Frankignoul, C. The influence of autumnal Eurasian snow cover on climate and its link with Arctic sea ice cover. J. Clim. 2017, 30, 7599–7619. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, T.; Zhao, Y.; Xu, C.; Feng, Y.; Liu, D. Drivers of Eurasian Spring Snow-Cover Variability. J. Clim. 2021, 34, 2037–2052. [Google Scholar] [CrossRef]
- Zhang, T.; Feng, Y.; Chen, H. Revealing the formation of the dipole mode of Eurasian snow cover variability during late autumn. J. Geophys. Res. Atmos. 2023, 128, e2022JD038233. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.J.; Wu, B.W.; Xu, M.; Zhou, B.T.; Li, H.X.; Wang, T. Dynamic Control of the Dominant Modes of Interannual Variability of Snowfall Frequency in China. J. Clim. 2021, 34, 2777–2790. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, R.; Li, W.; Zhu, J.; Yang, S. Possible impact of North Atlantic warming on the decadal change in the dominant modes of winter Eurasian snow water equivalent during 1979–2015. Clim. Dyn. 2019, 53, 5203–5213. [Google Scholar] [CrossRef]
- Zhou, B.T.; Wang, Z.Y.; Sun, B.; Hao, X. Decadal Change of Heavy Snowfall over Northern China in the Mid-1990s and Associated Background Circulations. J. Clim. 2021, 34, 825–837. [Google Scholar] [CrossRef]
- Bailey, H.; Hubbard, A.; Klein, E.S.; Mustonen, K.R.; Akers, P.D.; Marttila, H.; Welker, J.M. Arctic sea-ice loss fuels extreme European snowfall. Nat. Geosci. 2021, 14, 283–288. [Google Scholar] [CrossRef]
- Xu, B.; Chen, H.; Gao, C.; Zhou, B.; Sun, S.; Zhu, S. Regional response of winter snow cover over the Northern Eurasia to late autumn Arctic sea ice and associated mechanism. Atmos. Res. 2019, 222, 100–113. [Google Scholar] [CrossRef]
- Santolaria-Otín, M.; García-Serrano, J.; Ménégoz, M.; Bech, J. On the observed connection between Arctic sea ice and Eurasian snow in relation to the winter North Atlantic Oscillation. Env. Res. Lett. 2020, 15, 124010. [Google Scholar] [CrossRef]
- ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. 2017. Available online: https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 30 October 2023).
- Brodzik, M.J.; Armstrong, R. Northern Hemisphere EASE-Grid 2.0 weekly snow cover and sea ice extent, version 4; NASA National Snow and Ice Data Center Distributed Active Archive Center. 2013. Available online: https://doi.org/10.5067/P7O0HGJLYUQU (accessed on 10 November 2022).
- Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Enomoto, H. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Env. 2017, 191, 402–418. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Huang, B.; Thome, P.W.; Banzon, V.F.; Boyer, T.; Cherupin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validation and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Holton, J.R. An introduction to Dynamic Meteorology; Academic Press: London, UK, 1992. [Google Scholar]
- Takaya, K.; Nakamura, H. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett. 1997, 24, 2985–2988. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Eady, E.T. Long waves and cyclone waves. Tellus 1949, 1, 33–52. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Farrell, B. A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci. 1980, 37, 1648–1654. [Google Scholar] [CrossRef]
- North, G.R.; Moeng, F.J.; Bell, T.L.; Cahalan, R.F. The latitude dependence of the variance of zonally averaged quantities. Mon. Wea. Rev. 1982, 110, 319–326. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling Errors in the Estimation of Empirical Orthogonal Functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Chen, S.F.; Wu, R.; Liu, Y. Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. J. Clim. 2016, 29, 1109–1125. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef]
- Han, Z.; Luo, F.; Wan, J. The observational influence of the North Atlantic SST tripole on the early spring atmospheric circulation. Geophys. Res. Lett. 2016, 43, 2998–3003. [Google Scholar] [CrossRef]
- Song, Y.; Chen, H. Influence of the Late-Winter North Atlantic Tripole Sea Surface Temperature Anomalies on Spring Land Surface Temperature in Mid-to-High Latitudes of Western Eurasia. J. Clim. 2023, 36, 4933–4950. [Google Scholar] [CrossRef]
- Peng, S.; Mysak, L.A.; Ritchie, H.; Derome, J.; Dugas, B. The differences between early and midwinter atmospheric responses to sea surface temperature anomalies in the Northwest Atlantic. J. Clim. 1995, 8, 137–157. [Google Scholar] [CrossRef]
- Kushnir, Y.; Robinson, W.A.; Bladé, I.; Hall, N.M.J.; Peng, S.; Sutton, R. Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Clim. 2002, 15, 2233–2256. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, Y.; Chen, G.; Yang, X. Delineating the barotropic and baroclinic mechanisms in the midlatitude eddy-driven jet response to lower-tropospheric thermal forcing. J. Atmos. Sci. 2016, 73, 429–448. [Google Scholar] [CrossRef]
- Chen, S.F.; Wu, R.; Chen, W.; Hu, K.M.; Yu, B. Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia. Clim. Dyn. 2020, 54, 5111–5126. [Google Scholar] [CrossRef]
- Lau, N.C. Variability of the Observed Midlatitude Storm Tracks in Relation to Low-Frequency Changes in the Circulation Pattern. J. Atmos. Sci. 1988, 45, 2718–2743. [Google Scholar] [CrossRef]
- Cai, M.; Yang, S.; Dool, H.; Kousky, V. Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus Dyn. Meteorol. Oceanogr. 2007, 59, 127–140. [Google Scholar] [CrossRef]
- Gao, K.; Tang, Y.; Chen, D. Influence of Arctic Sea ice and Interdecadal Pacific Oscillation on the recent increase of winter extreme snowfall in Northeast China. Atmos. Res. 2023, 295, 107030. [Google Scholar] [CrossRef]
- Wu, R.; Liu, G.; Ping, Z. Contrasting Eurasian spring and summer climate anomalies associated with western and eastern Eurasian spring snow cover changes. J. Geophys. Res. Atmos. 2014, 119, 7410–7424. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, R.; Duan, A.-M.; Qu, X. Influence of eastern Tibetan Plateau spring snow cover on North American air temperature and its interdecadal change. J. Clim. 2020, 33, 5123–5139. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, T.; Krinner, G.; Wang, X.; Gasser, T.; Peng, S.; Piao, S.; Yao, T. The Weakening Relationship between Eurasian Spring Snow Cover and Indian Summer Monsoon Rainfall. Sci. Adv. 2019, 5, eaau8932. [Google Scholar] [CrossRef]
- Han, T.; Tang, G.; Zhou, B.; Hao, X.; Li, S. Strengthened relationship between sea ice in East Siberian Sea and midsummer rainfall in Northeast China. Clim. Dyn. 2023, 60, 3749–3763. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R. Interdecadal changes in the relationship between interannual variations of spring North Atlantic SST and Eurasian surface air temperature. J. Clim. 2017, 30, 3771–3787. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Gastellu-Etchegorry, J.-P. Globally quantitative analysis of the impact of atmosphere and spectral response function on 2-band enhanced vegetation index (EVI2) over Sentinel-2 and Landsat-8. ISPRS J. Photogramm. Remote Sens. 2023, 205, 206–226. [Google Scholar] [CrossRef]
Teleconnection Indices | R |
---|---|
AO | −0.35 * |
NAO | −0.11 |
EA | −0.21 |
EAWR | −0.04 |
POL | −0.45 ** |
SCAND | −0.17 |
WP | −0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wang, X. Dynamics of Spring Snow Cover Variability over Northeast China. Remote Sens. 2023, 15, 5330. https://doi.org/10.3390/rs15225330
Zhang T, Wang X. Dynamics of Spring Snow Cover Variability over Northeast China. Remote Sensing. 2023; 15(22):5330. https://doi.org/10.3390/rs15225330
Chicago/Turabian StyleZhang, Taotao, and Xiaoyi Wang. 2023. "Dynamics of Spring Snow Cover Variability over Northeast China" Remote Sensing 15, no. 22: 5330. https://doi.org/10.3390/rs15225330
APA StyleZhang, T., & Wang, X. (2023). Dynamics of Spring Snow Cover Variability over Northeast China. Remote Sensing, 15(22), 5330. https://doi.org/10.3390/rs15225330