GNSS Spoofing Detection Using Q Channel Energy
Abstract
:1. Introduction
2. Received Signal Model under Intermediate Spoofing Attack
2.1. Spoofing Attack Pattern
2.2. Received Signal Model
3. Spoofing Detection
3.1. Establishment of Test Quantity and Threshold
3.2. Effect of Correlator Spacing
3.3. Estimation of Noise Level
3.4. Detection Strategy
4. Simulation Results
4.1. Evaluation Criterion
4.2. Performance Evaluation
5. Tests with TEXBAT Dataset
5.1. Evaluation Criterion
5.2. Static Power-Matched Scenarios
5.3. Overpowered Scenarios
5.4. Dynamic Scenarios
6. Field Data Analysis
6.1. Experimental Setup
6.2. Performance Verification
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafarnia-Jahromi, A.; Broumandan, A.; Nielsen, J.; Lachapelle, G. GPS vulnerability to spoofing threats and a review of antispoofing techniques. Int. J. Navig. Obs. 2012, 2012, 127072. [Google Scholar] [CrossRef]
- Shepard, D.P.; Humphreys, T.E. Characterization of receiver response to spoofing attacks. In Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 2608–2618. [Google Scholar]
- Bhatti, J.; Humphreys, T.E. Hostile control of ships via false GPS signals: Demonstration and detection. NAVIGATION J. Inst. Navig. 2017, 64, 51–66. [Google Scholar] [CrossRef]
- Ma, C.; Yang, J.; Chen, J.; Qu, Z.; Zhou, C. Effects of a navigation spoofing signal on a receiver loop and a UAV spoofing approach. GPS Solut. 2020, 24, 76. [Google Scholar] [CrossRef]
- Humphreys, T.E.; Ledvina, B.M.; Psiaki, M.L.; O’Hanlon, B.W.; Kintner, P.M. Assessing the spoofing threat: Development of a portable GPS civilian spoofer. In Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation, Savannah, GA, USA, 16–19 September 2008; pp. 2314–2325. [Google Scholar]
- Gao, Y.; Li, G. A new asynchronous traction signal spoofing algorithm for PLL-assisted DLL receiver. GPS Solut. 2023, 27, 141. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, F.P.; Hao, J.M.; Zhang, L.D.; Wang, X. Reduction research on performance index system of satellite navigation system spoofing. GPS Solut. 2022, 26, 43. [Google Scholar] [CrossRef]
- Psiaki, M.L.; Humphreys, T.E. GNSS spoofing and detection. Proc. IEEE 2016, 104, 1258–1270. [Google Scholar] [CrossRef]
- Daneshmand, S.; Jafarnia-Jahromi, A.; Broumandon, A.; Lachapelle, G. A low-complexity GPS anti-spoofing method using a multi-antenna array. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 17–21 September 2012; pp. 1233–1243. [Google Scholar]
- Psiaki, M.L.; O’Hanlon, B.W.; Bhatti, J.A.; Shepard, D.P.; Humphreys, T.E. Civilian GPS spoofing detection based on dual-receiver correlation of military signals. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 2619–2645. [Google Scholar]
- Günther, C. A survey of spoofing and counter-measures. NAVIGATION J. Inst. Navig. 2014, 61, 159–177. [Google Scholar] [CrossRef]
- Huang, L.; Lu, Z.; Ren, C.; Liu, Z.; Xiao, Z.; Song, J.; Li, B. Research on detection technology of spoofing under the mixed narrowband and spoofing interference. Remote Sens. 2022, 14, 2506. [Google Scholar] [CrossRef]
- Hu, Y.; Bian, S.; Cao, K.; Ji, B. GNSS spoofing detection based on new signal quality assessment model. GPS Solut. 2018, 22, 28. [Google Scholar] [CrossRef]
- Wesson, K.D.; Gross, J.N.; Humphreys, T.E.; Evans, B.L. GNSS signal authentication via power and distortion monitoring. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 739–754. [Google Scholar] [CrossRef]
- Jafarnia Jahromi, A.; Broumandan, A.; Nielsen, J.; Lachapelle, G. GPS spoofer countermeasure effectiveness based on signal strength, noise power, and C/N0 measurements. Int. J. Satell. Commun. Netw. 2012, 30, 181–191. [Google Scholar] [CrossRef]
- Jafarnia-Jahromi, A.; Lin, T.; Broumandan, A.; Nielsen, J.; Lachapelle, G. Detection and mitigation of spoofing attacks on a vector based tracking GPS receiver. In Proceedings of the 2012 International Technical Meeting of the Institute of Navigation, Newport Beach, CA, USA, 30–31 January 2012; pp. 790–800. [Google Scholar]
- Troglia Gamba, M.; Truong, M.D.; Motella, B.; Falletti, E.; Ta, T.H. Hypothesis testing methods to detect spoofing attacks: A test against the TEXBAT datasets. GPS Solut. 2017, 21, 577–589. [Google Scholar] [CrossRef]
- Liu, K.; Wu, W.; Wu, Z.; He, L.; Tang, K. Spoofing detection algorithm based on pseudorange differences. Sensors 2018, 18, 3197. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Li, H.; Lu, M. Multi-channel joint signal quality monitor method for detecting GNSS time synchronization attacks. In Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+), St. Louis, MO, USA, 20–24 September 2021; pp. 4274–4287. [Google Scholar]
- Yang, Y.; Li, H.; Lu, M. Performance assessment of signal quality monitoring based GNSS spoofing detection techniques. In Proceedings of the China Satellite Navigation Conference (CSNC) 2015 Proceedings, Xi’an, China, 13–15 May 2015; pp. 783–793. [Google Scholar]
- Jahromi, A.J.; Broumandan, A.; Daneshmand, S.; Lachapelle, G.; Ioannides, R.T. Galileo signal authenticity verification using signal quality monitoring methods. In Proceedings of the 2016 International Conference on Localization and GNSS (ICL-GNSS), Barcelona, Spain, 28–30 June 2016. [Google Scholar]
- Sun, C.; Cheong, J.W.; Dempster, A.G.; Zhao, H.; Feng, W. GNSS spoofing detection by means of signal quality monitoring (SQM) metric combinations. IEEE Access 2018, 6, 66428–66441. [Google Scholar] [CrossRef]
- Benachenhou, K.; Bencheikh, M.L. Detection of global positioning system spoofing using fusion of signal quality monitoring metrics. Comput. Electr. Eng. 2021, 92, 107159. [Google Scholar] [CrossRef]
- Sun, C.; Cheong, J.W.; Dempster, A.G.; Demicheli, L.; Cetin, E.; Zhao, H.; Feng, W. Moving variance-based signal quality monitoring method for spoofing detection. GPS Solut. 2018, 22, 83. [Google Scholar] [CrossRef]
- Pirsiavash, A.; Broumandan, A.; Lachapelle, G. Two-dimensional signal quality monitoring for spoofing detection. In Proceedings of the ESA/ESTEC NAVITEC 2016 Conference, Noordwijk, The Netherlands, 14–16 December 2016. [Google Scholar]
- Pirsiavash, A.; Broumandan, A.; Lachapelle, G.; O’Keefe, K. Detection and classification of GNSS structural interference based on monitoring the quality of signals at the tracking level. In Proceedings of the 6th ESA International colloquium of Scientific and Fundamental Aspects of Galileo, Valencia, Spain, 25–27 October 2017. [Google Scholar]
- Sun, C.; Cheong, J.W.; Dempster, A.G.; Zhao, H.; Bai, L.; Feng, W. Robust spoofing detection for GNSS instrumentation using Q-channel signal quality monitoring metric. IEEE Trans. Instrum. Meas. 2021, 70, 8504115. [Google Scholar] [CrossRef]
- Humphreys, T.E.; Bhatti, J.A.; Shepard, D.; Wesson, K. The Texas spoofing test battery: Toward a standard for evaluating GPS signal authentication techniques. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 17–21 September 2012. [Google Scholar]
- Holmes, J.K. Spread Spectrum Systems for GNSS and Wireless Communications; Artech House Inc.: Norwood, MA, USA, 2007; pp. 179–181. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Detection Theory; Prentice Hall PTR: Hoboken, NJ, USA, 1993; pp. 21–26. [Google Scholar]
- Van Dierendonck, A.J.; Fenton, P.; Ford, T. Theory and performance of narrow correlator spacing in a GPS receiver. Navigation 1992, 39, 265–283. [Google Scholar] [CrossRef]
- Pirsiavash, A. Receiver-Level Signal and Measurement Quality Monitoring for Reliable GNSS-Based Navigation. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2019. [Google Scholar]
- Ward, P.W. GPS receiver search techniques. In Proceedings of the Position, Location and Navigation Symposium-PLANS’96, Atlanta, GA, USA, 22–25 April 1996; pp. 604–611. [Google Scholar]
- Langer, M.; Kiesel, S.; Kief, K.F.; Trommer, G.F. Simulation and efficient implementation of a multipath estimating delay locked loop using FIMLA algorithm. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 1152–1161. [Google Scholar]
- Borre, K.; Akos, D.M.; Bertelsen, N.; Rinder, P.; Jensen, S.H. A Software-Defined GPS and Galileo Receiver: A Single-Frequency Approach; Springer Science & Business Media: Berlin, Germany, 2007; pp. 81–84. [Google Scholar]
SQM Metric | Definition | Nominal Mean | Nominal Variance |
---|---|---|---|
Ratio | 1 | ||
Delta | 0 |
CNR | Overall Detection Ratio of Ratio | Overall Detection Ratio of Delta | Overall Detection Ratio of Q energy |
---|---|---|---|
30 | 0.0431 | 0.0544 | 0.1066 |
32 | 0.0816 | 0.0964 | 0.2460 |
34 | 0.1327 | 0.1565 | 0.3946 |
36 | 0.1984 | 0.2744 | 0.5068 |
38 | 0.3231 | 0.3696 | 0.5930 |
40 | 0.4263 | 0.4671 | 0.6769 |
42 | 0.5057 | 0.5522 | 0.7449 |
44 | 0.6009 | 0.6236 | 0.8084 |
46 | 0.6576 | 0.7007 | 0.8492 |
Scenario Description | Platform Mobility | Power Adv (dB) | Frequency Lock |
---|---|---|---|
1: Static Overpowered Time Push | Static | 10 | Unlocked |
2: Static Power-Matched Time Push | Static | 1.3 | Locked |
3: Static Power-Matched Pos. Push | Static | 0.4 | Locked |
4: Dynamic Overpowered Time Push | Dynamic | 9.9 | Unlocked |
5: Dynamic Power-Matched Pos. Push | Dynamic | 0.8 | Locked |
SQM Metric | Definition | Nominal Mean | Nominal Variance |
---|---|---|---|
Q ratio | 0 |
Scenario Description | Delta | Q Ratio | Q Energy |
---|---|---|---|
1: Static Overpowered Time Push | 14.8% | 32.4% | 82.0% |
2: Static Power-Matched Time Push | 18.4% | 65.5% | 62.6% |
3: Static Power-Matched Pos. Push | 20.3% | 67.5% | 65.8% |
4: Dynamic Overpowered Time Push | 6.6% | 8.9% | 80.0% |
5: Dynamic Power-Matched Pos. Push | 17.2% | 53.9% | 64.3% |
Number | Name | Equipment Model | Function |
---|---|---|---|
1 | Signal Recording and Playback System | RPS2000 | Frequency upconversion of the baseband data for spoofing signal |
2 | Power Attenuator | MC15542 | Power attenuation (20 dB) |
3 | Directional Antenna | JW-LXJSTX1.2-1.6 | Signal Transmission |
4 | Omnidirectional Antenna | HX-CSX601A | Signal Reception |
5 | GNSS Software Receiver | SX.3000-0150 | Baseband data collection |
Scenario Number | Time of Capture Stage (s) | Power Adv (dB) |
---|---|---|
1 | 38 | 0.5 |
2 | 55.5 | 2.0 |
3 | 87 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Tang, X.; Ma, P.; Wu, J.; Ma, C.; Sun, G. GNSS Spoofing Detection Using Q Channel Energy. Remote Sens. 2023, 15, 5337. https://doi.org/10.3390/rs15225337
Wang J, Tang X, Ma P, Wu J, Ma C, Sun G. GNSS Spoofing Detection Using Q Channel Energy. Remote Sensing. 2023; 15(22):5337. https://doi.org/10.3390/rs15225337
Chicago/Turabian StyleWang, Jiaqi, Xiaomei Tang, Pengcheng Ma, Jian Wu, Chunjiang Ma, and Guangfu Sun. 2023. "GNSS Spoofing Detection Using Q Channel Energy" Remote Sensing 15, no. 22: 5337. https://doi.org/10.3390/rs15225337
APA StyleWang, J., Tang, X., Ma, P., Wu, J., Ma, C., & Sun, G. (2023). GNSS Spoofing Detection Using Q Channel Energy. Remote Sensing, 15(22), 5337. https://doi.org/10.3390/rs15225337