Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System
Abstract
:1. Introduction
2. Theory
3. Experimental Details
3.1. Sensor Setup
3.2. Selection of Transitions
3.3. Sensor Calibration
4. Results and Discussion
4.1. Effect of Temperature on the Absorption Spectrum and Concentration of
4.2. Effect of Humidity on the Absorption Spectrum and Concentration of
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, B.; Tian, L.; Fu, M.; Zhang, G. Green development growth momentum under carbon neutrality scenario. J. Clean. Prod. 2021, 316, 128327. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, R.; Loginova, J.; Sharma, V.; Zhang, Z.; Qian, Z. Institutional Logic of Carbon Neutrality Policies in China: What Can We Learn? Energies 2022, 15, 4391. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Cicerone, R.J. Future global warming from atmospheric trace gases. Nature 1986, 319, 109–115. [Google Scholar] [CrossRef]
- Kramer, K.J.; Moll, H.C.; Nonhebel, S.; Wilting, H.C. Greenhouse gas emissions related to Dutch food consumption. Energy Policy 1999, 27, 203–216. [Google Scholar] [CrossRef]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef]
- Ravishankara, A.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Barker, P.A.; Allen, G.; Flynn, M.; Riddick, S.; Pitt, J.R. Measurement of recreational N2O emissions from an urban environment in Manchester, UK. Urban Clim. 2022, 46, 101282. [Google Scholar] [CrossRef]
- Anser, M.K.; Godil, D.I.; Khan, M.A.; Nassani, A.A.; Zaman, K.; Abro, M.M.Q. The impact of coal combustion, nitrous oxide emissions, and traffic emissions on COVID-19 cases: A Markov-switching approach. Environ. Sci. Pollut. Res. 2021, 28, 64882–64891. [Google Scholar] [CrossRef]
- Menyailo, O.V.; Hungate, B.A. Stable isotope discrimination during soil denitrification: Production and consumption of nitrous oxide. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Maisons, G.; Carbajo, P.G.; Carras, M.; Romanini, D. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser. Opt. Lett. 2010, 35, 3607–3609. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Han, Y.; Li, B. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection. Appl. Phys. B 2018, 124, 1–8. [Google Scholar] [CrossRef]
- Menduni, G.; Sgobba, F.; Dello Russo, S.; Ranieri, A.C.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Passaro, V.M.N.; Csutak, S.; Assante, D.; et al. Fiber-Coupled Quartz-Enhanced Photoacoustic Spectroscopy System for Methane and Ethane Monitoring in the Near-Infrared Spectral Range. Molecules 2020, 25, 5607. [Google Scholar] [CrossRef]
- Wang, X.; Chen, T.; Meng, D.; Wang, F. A simple FBG Fabry–Perot sensor system with high sensitivity based on fiber laser beat frequency and Vernier effect. IEEE Sens. J. 2020, 21, 71–75. [Google Scholar] [CrossRef]
- Ali, A.; Hwang, L.; Trombley, M. Residual-income-based valuation predicts future stock returns: Evidence on mispricing vs. risk explanations. Account. Rev. 2003, 78, 377–396. [Google Scholar] [CrossRef]
- Qi, W.; Wang, S.-C.; Liu, T.-Y.; Chen, Z.-Q. Research progress of multi-component gas detection by photoacoustic spectroscopy. Spectrosc. Spectr. Anal. 2022, 42, 1–8. [Google Scholar] [CrossRef]
- He, Y.-X.; Zhou, W.-Q.; Chuan, K.; Tao, X.; Yong, Z. Review of Laser-Induced Breakdown Spectroscopy in Gas Detection. Spectrosc. Spectr. Anal. 2021, 41, 2681–2687. [Google Scholar] [CrossRef]
- Werle, P. A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1998, 54, 197–236. [Google Scholar] [CrossRef]
- Gao, X.; Fan, H.; Huang, T.; Wang, X.; Bao, J.; Li, X.; Huang, W.; Zhang, W. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 65, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wei, G.; He, A.; Shen, H. A novel wavelength modulation spectroscopy in TDLAS. Infrared Phys. Technol. 2021, 114, 103661. [Google Scholar] [CrossRef]
- Luo, Z.C.; Luo, A.P.; Xu, W.C.; Liu, J.R.; Yin, H.S. Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber ring laser. Appl. Phys. B-Lasers Opt. 2010, 100, 811–820. [Google Scholar] [CrossRef]
- Dong, L.; Tittel, F.K.; Li, C.; Sanchez, N.P.; Wu, H.; Zheng, C.; Yu, Y.; Sampaolo, A.; Griffin, R.J. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Opt. Express 2016, 24, A528–A535. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, F.; Huang, Q.; Yan, J.; Cen, K. Multiparameter Measurement in Ethylene Diffusion Flame Based on Time-Division Multiplexed Tunable Diode Laser Absorption Spectroscopy. IEEE Photonics J. 2019, 11, 2910393. [Google Scholar] [CrossRef]
- Liu, N.; Xu, L.; Zhou, S.; Zhang, L.; Li, J. Soil respiration analysis using a mid-infrared quantum cascade laser and calibration-free WMS-based dual-gas sensor. Analyst 2021, 146, 3841–3851. [Google Scholar] [CrossRef]
- Ren, W.; Jiang, W.; Tittel, F.K. Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH4 and N2O. Appl. Phys. B-Lasers Opt. 2014, 117, 245–251. [Google Scholar] [CrossRef]
- McDermitt, D.; Burba, G.; Xu, L.; Anderson, T.; Komissarov, A.; Riensche, B.; Schedlbauer, J.; Starr, G.; Zona, D.; Oechel, W.; et al. A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl. Phys. B-Lasers Opt. 2011, 102, 391–405. [Google Scholar] [CrossRef]
- Tao, L.; Sun, K.; Khan, M.A.; Miller, D.J.; Zondlo, M.A. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser. Opt. Express 2012, 20, 28106–28118. [Google Scholar] [CrossRef]
- Abitan, H.; Bohr, H.; Buchhave, P. Correction to the Beer-Lambert-Bouguer law for optical absorption. Appl. Opt. 2008, 47, 5354–5357. [Google Scholar] [CrossRef]
- Kocsis, L.; Herman, P.; Eke, A. The modified Beer-Lambert law revisited. Phys. Med. Biol. 2006, 51, N91–N98. [Google Scholar] [CrossRef]
- Gamache, R.; Kennedy, S.; Hawkins, R.; Rothman, L. Total internal partition sums for molecules in the terrestrial atmosphere. J. Mol. Struct. 2000, 517, 407–425. [Google Scholar] [CrossRef]
- Rothman, L.S. The evolution and impact of the HITRAN molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1565–1567. [Google Scholar] [CrossRef]
- Rothman, L.; Rinsland, C.; Goldman, A.; Massie, S.; Edwards, D.; Flaud, J.; Perrin, A.; Camy-Peyret, C.; Dana, V.; Mandin, J.; et al. The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 665–710. [Google Scholar] [CrossRef]
- Gunson, M.; Farmer, C.B.; Norton, R.; Zander, R.; Rinsland, C.P.; Shaw, J.; Gao, B.C. Measurements of CH4, N2O, CO, H2O, and O3 in the middle atmosphere by the Atmospheric Trace Molecule Spectroscopy Experiment on Spacelab 3. J. Geophys. Res. Atmos. 1990, 95, 13867–13882. [Google Scholar] [CrossRef]
- Pauleta, S.R.; Carepo, M.S.; Moura, I. Source and reduction of nitrous oxide. Coord. Chem. Rev. 2019, 387, 436–449. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhao, Y.; Feng, Z.; Zhang, N.; Wang, Y.; Shen, Z.; Kang, Z.; Li, Q. Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System. Remote Sens. 2023, 15, 5390. https://doi.org/10.3390/rs15225390
Chen J, Zhao Y, Feng Z, Zhang N, Wang Y, Shen Z, Kang Z, Li Q. Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System. Remote Sensing. 2023; 15(22):5390. https://doi.org/10.3390/rs15225390
Chicago/Turabian StyleChen, Jiahong, Yuefeng Zhao, Zhihao Feng, Nan Zhang, Yanxuan Wang, Zhiqiang Shen, Zongmin Kang, and Qingsong Li. 2023. "Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System" Remote Sensing 15, no. 22: 5390. https://doi.org/10.3390/rs15225390
APA StyleChen, J., Zhao, Y., Feng, Z., Zhang, N., Wang, Y., Shen, Z., Kang, Z., & Li, Q. (2023). Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System. Remote Sensing, 15(22), 5390. https://doi.org/10.3390/rs15225390