Coseismic Deformation, Fault Slip Distribution, and Coulomb Stress Perturbation of the 2023 Türkiye-Syria Earthquake Doublet Based on SAR Offset Tracking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tectonic Setting
2.2. Data Collection and Analysis
3. Results
3.1. Offset Deformation Results
3.2. Fault Model and Slip Distribution Inversion
3.2.1. Rupture Trace Fitting
3.2.2. Data Downsampling
3.2.3. Constructing the Initial Fault Model
3.2.4. Coseismic Slip Distribution
4. Discussion
4.1. Interaction between Plates
4.2. Stress-Triggering Relationship between the Mw 7.8 and 7.6 Earthquakes
4.3. Stress Perturbations in the Vicinity of the Türkiye-Syria Earthquake Sequence
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mai, P.M.; Aspiotis, T.; Aquib, T.A.; Valero Cano, E.; Castro Cruz, D.A.; Espindola-Carmona, A.; Li, B.; Li, X.; Liu, J.; Matrau, R.; et al. The Destructive Earthquake Doublet of 6 February 2023 in South-Central Türkiye and Northwestern Syria: Initial Observations and Analyses. Seism. Rec. 2023, 3, 105–115. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Elmaci, H. Active Fault Map of Turkey with an Explanatory Text 1: 1,250,000 Scale; special publication series 30; General Directorate of Mineral Research and Exploration: Ankara, Turkey, 2013; p. 89. [Google Scholar]
- Gülen, L.; Barka, A.; Toksöz, M.N. Continental collision and related complex deformation: Maras triple junction and surrounding structures, SE Turkey. Hacet. Univ. Earth Sci. J. 1987, 14, 319–336. [Google Scholar]
- Barbot, S.; Weiss, J.R. Connecting subduction, extension and shear localization across the Aegean Sea and Anatolia. Geophys. J. Int. 2021, 226, 422–445. [Google Scholar] [CrossRef]
- Melgar, D.; Taymaz, T.; Ganas, A.; Crowell, B.; Öcalan, T.; Kahraman, M.; Tsironi, V.; Yolsal-Çevikbilen, S.; Valkaniotis, S.; Irmak, T.S.; et al. Sub-and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica 2023, 2. [Google Scholar] [CrossRef]
- Zahradník, J.; Turhan, F.; Sokos, E.; Gallovič, F. Asperity-like (segmented) structure of the 6 February 2023 Turkish earthquakes. Earth ArXiv 2023. [Google Scholar] [CrossRef]
- Jiao, X.; Liu, C.; Xiong, X. Source process of the 24 January 2020 Mw 6.7 East Anatolian fault zone, Turkey, earthquake. Seismol. Res. Lett. 2020, 91, 3120–3128. [Google Scholar]
- Lin, X.; Hao, J.; Wang, D.; Chu, R.; Zeng, X.; Xie, J.; Zhang, B.; Bai, Q. Coseismic Slip Distribution of the 24 January 2020 Mw 6.7 Doganyol Earthquake and in Relation to the Foreshock and Aftershock Activities. Seism. Res. Lett. 2020, 92, 127–139. [Google Scholar] [CrossRef]
- Jia, Z.; Jin, Z.; Marchandon, M.; Ulrich, T.; Gabriel, A.-A.; Fan, W.; Shearer, P.; Zou, X.; Rekoske, J.; Bulut, F.; et al. The complex dynamics of the 2023 Kahramanmaraş, Turkey, Mw 7.8–7.7 earthquake doublet. Science 2023, 381, 985–990. [Google Scholar] [CrossRef]
- Meng, L.; Xu, L.; Mohanna, S.; Ji, C.; Ampuero, J.; Yunjun, Z.; Hasnain, M.; Chu, R. The 2023 Mw7.8 Kahramanmaraş, Turkey Earthquake: A Multi-segment Rupture in A Mil-lennium Supercycle. Res. Sq. pre-print. [CrossRef]
- Atanasova, M.; Raykova, P.; Nikolov, H. Determining the Deformations of the Earth’s Surface after the Earthquakes in Turkey-Syria of 06 February 2023—Initial Results. C. R. Acad. Bulg. Sci. 2023, 76, 554–562. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Tao, T.; Zhu, Y.; Qu, X.; Li, Z.; Huang, J.; Song, S. Source Model of the 2023 Turkey Earthquake Sequence Imaged by Sentinel-1 and GPS Measurements: Implications for Heterogeneous Fault Behavior along the East Anatolian Fault Zone. Remote Sens. 2023, 15, 2618. [Google Scholar] [CrossRef]
- An, Q.; Feng, G.; He, L.; Xiong, Z.; Lu, H.; Wang, X.; Wei, J. Three-Dimensional Deformation of the 2023 Turkey Mw 7.8 and Mw 7.7 Earthquake Sequence Obtained by Fusing Optical and SAR Images. Remote Sens. 2023, 15, 2656. [Google Scholar] [CrossRef]
- Zhang, G.; Qu, C.; Shan, X.; Song, X.; Zhang, G.; Wang, C.; Hu, J.-C.; Wang, R. Slip distribution of the 2008 Wenchuan Ms 7.9 earthquake by joint inversion from GPS and InSAR measurements: A resolution test study. Geophys. J. Int. 2011, 186, 207–220. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys. J. Int. 2011, 186, 971–979. [Google Scholar] [CrossRef]
- Sboras, S.; Lazos, I.; Bitharis, S.; Pikridas, C.; Galanakis, D.; Fotiou, A.; Chatzipetros, A.; Pavlides, S. Source model-ling and stress transfer scenarios of the October 30, 2020 Samos earthquake: Seismotectonic implications. Turk. J. Earth Sci. 2021, 30, 699–717. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C.; Huet, B.; Labrousse, L.; Le Pourhiet, L.; Lacombe, O.; Lecomte, E.; Burov, E.; Denèle, Y.; Brun, J.-P.; et al. Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics 2013, 597, 1–33. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Auer, L.; Billi, A.; Boschi, L.; Brun, J.P.; Capitanio, F.A.; Funiciello, F.; Horvàth, F.; Jolivet, L.; et al. Mantle dynamics in the Mediterranean. Rev. Geophys. 2014, 52, 283–332. [Google Scholar] [CrossRef]
- Gallovič, F.; Zahradník, J.; Plicka, V.; Sokos, E.; Evangelidis, C.; Fountoulakis, I.; Turhan, F. Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazığ earthquake, Turkey. Commun. Earth Environ. 2020, 1, 40. [Google Scholar] [CrossRef]
- Duman, T.Y.; Ömer, E. The East Anatolian Fault: Geometry, Segmentation and Jog Characteristics; Geological Society; London, Special Publications: London, UK, 2013; Volume 372, pp. 495–529. [Google Scholar]
- Güvercin, S.E.; Karabulut, H.; Konca, A.; Doğan, U.; Ergintav, S. Active seismotectonics of the East Anatolian Fault. Geophys. J. Int. 2022, 230, 50–69. [Google Scholar] [CrossRef]
- Herece, E. Doğu Anadolu Fayı (DAF) Atlası [East Anatolian Fault (EAF) Atlas]; MTA: Ankara, Turket, 2008; Volume 359. [Google Scholar]
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. Solid Earth 2006, 111, B5. [Google Scholar] [CrossRef]
- Aktug, B.; Ozener, H.; Dogru, A.; Sanbucu, A.; Turgut, B.; Halicioglu, K.; Yilmaz, O.; Havazli, E. Slip rates and seis-mic potential on the East Anatolian Fault System using an improved GPS velocity field. J. Geod. 2016, 94–95, 1–12. [Google Scholar]
- Westaway, R.O.B.; Arger, J.A.N. The Gölbai basin, southeastern Turkey: A complex discontinuity in a major strike-slip fault zone. J. Geol. Soc. 1996, 153, 729–744. [Google Scholar] [CrossRef]
- Karabacak, V.; Yönlü, Ö.; Altunel, E.; Yalçıner, C.Ç.; Akyüz, H.S.; Kıyak, N.G. Doğu Anadolu Fay Zonu güneybatı uzanımının paleosismolojisi ve ilk kayma hızı bulguları. In ATAG-15 (Aktif Tektonik Araştırma Grubu 15. Çalıştayı) Bildiri Özleri Kitabı; Çukurova Üniversitesi: Adana, Turkey, 2011. [Google Scholar]
- Lomax, A. Precise, NLL-SSST-Coherence Hypocenter Catalog for the 2023 Mw 7.8 and Mw 7.6 SE Turkey Earthquake Sequence. Zenodo. 2023. Available online: https://zenodo.org/records/7727678 (accessed on 20 October 2023).
- Armijo, R.; Meyer, B.; Hubert, A.; Barka, A. Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics. Geology 1999, 27, 267–270. [Google Scholar] [CrossRef]
- Hu, J.; Liu, J.; Li, Z.; Zhu, J.; Wu, L.; Sun, Q.; Wu, W. Estimating threedimensional coseismic deformations with the SM-VCE method based on heterogeneous SAR observations: Selection of homogeneous points and analysis of observation combinations. Remote Sens. Environ. 2021, 255, 112298. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Li, Z.; Ma, Z.; Wu, L.; Jiang, W.; Feng, G.; Zhu, J. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qing-hai Province, China from Sentinel-1 and ALOS-2 SAR images. Sci. China Earth Sci. 2022, 65, 687–697. [Google Scholar] [CrossRef]
- Bürgmann, R.; Schmidt, D.; Nadeau, R.M.; D’Alessio, M.; Fielding, E.; Manaker, D.; McEvilly, T.V.; Murray, M.H. Earthquake Potential Along the Northern Hayward Fault, California. Science 2000, 289, 1178–1182. [Google Scholar] [CrossRef]
- Li, Y.; Bürgmann, R. Partial Coupling and Earthquake Potential Along the Xianshuihe Fault, China. J. Geophys. Res. Solid Earth 2021, 126, e21406. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar inter-ferometry. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Shan, X.-J.; Qu, C.-Y.; Gong, W.-Y.; Zhao, D.-Z.; Zhang, Y.-F.; Zhang, G.-H.; Song, X.-G.; Liu, Y.-H.; Zhang, G.-F. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion. Chin. J. Geophys. 2017, 60, 4527–4536. (In Chinese) [Google Scholar]
- Zhao, D.; Qu, C.; Bürgmann, R.; Gong, W.; Shan, X. Relaxation of Tibetan Lower Crust and Afterslip Driven by the 2001 Mw7.8 Kokoxili, China, Earthquake Constrained by a Decade of Geodetic Measurements. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021314. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, G.; Zhao, D.; Xie, C.; Huang, C.; Shan, X. Fault geometry and kinematics of the 2021 Mw 7.3 Maduo earthquake from aftershocks and InSAR observations. Front. Earth Sci. 2022, 10, 993984. [Google Scholar] [CrossRef]
- Chen, H.; Qu, C.; Zhao, D.; Ma, C.; Shan, X. Rupture Kinematics and Coseismic Slip Model of the 2021 Mw 7.3 Maduo (China) Earthquake: Implications for the Seismic Hazard of the Kunlun Fault. Remote Sens. 2021, 13, 3327. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.-P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef]
- Wang, L.; Deng, K.; Zheng, M. Research on ground deformation monitoring method in mining areas using the probability integral model fusion D-InSAR, sub-band InSAR and offset-tracking. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101981. [Google Scholar] [CrossRef]
- Fan, H.; Gao, X.; Yang, J.; Deng, K.; Yu, Y. Monitoring Mining Subsidence Using A Combination of Phase-Stacking and Off-set-Tracking Methods. Remote Sens. 2015, 7, 9166–9183. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the Ersenvisat Symposium, Gothenburg, Sweden, 16–20 October 2000; Volume 1620. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Lo, R.W.; Levitt, K.N.; Olsson, R.A. MCF: A malicious code filter. Comput. Secur. 1995, 14, 541–566. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.; Shan, X.; Gong, W.; Zhang, Y.; Zhang, G. InSAR and GPS derived coseismic deformation and fault model of the 2017 Ms7. 0 Jiuzhaigou earthquake in the Northeast Bayanhar block. Tectonophysics 2018, 726, 86–99. [Google Scholar] [CrossRef]
- Li, Z.; Song, G.; Yu, C.; Xiao, R.; Chen, L.; Luo, H.; Dai, K.; Ge, D.; Ding, Y.; Zhang, Y.; et al. Application of satellite radar remote sensing in landslide disaster detection and monitoring: Challenges and countermeasures. J. Wuhan Univ. (Inf. Sci. Ed.) 2019, 44, 967–979. [Google Scholar] [CrossRef]
- Rott, H.; Stuefer, M.; Siegel, A.; Skvarca, P.; Eckstaller, A. Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield. Geophys. Res. Lett. 1998, 25, 1407–1410. [Google Scholar] [CrossRef]
- Gray, A.; Short, N.; Mattar, K.; Jezek, K. Velocities and Flux of the Filchner Ice Shelf and its Tributaries Determined from Speckle Tracking Interferometry. Can. J. Remote Sens. 2001, 27, 193–206. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, C.; San, X. Obtaining two-dimensional deformation field of Wenchuan earthquake based on SAR image offset. J. Geophys. 2012, 55, 3296–3306. [Google Scholar]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C. Glacier motion estimation using sar offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Feng, G.; Li, Z.; Shan, X.; Zhang, L.; Zhang, G.; Zhu, J. Geodetic model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 aftershock estimated from InSAR and GPS data. Geophys. J. Int. 2015, 203, 896–900. [Google Scholar] [CrossRef]
- Corzo, G.; Varouchakis, E.A. (Eds.) Spatiotemporal Analysis of Extreme Hydrological Events; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Wang, R.; Parolai, S.; Ge, M.; Jin, M.; Walter, T.R.; Zschau, J. The 2011 Mw 9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data. Bull. Seism. Soc. Am. 2013, 103, 1336–1347. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Bletery, Q.; Cavalié, O.; Nocquet, J.; Ragon, T. Distribution of Interseismic Coupling Along the North and East Anatolian Faults Inferred from InSAR and GPS Data. Geophys. Res. Lett. 2020, 47, e2020GL087775. [Google Scholar] [CrossRef]
- Harris, R.A. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. J. Geophys. Res. Solid Earth 1998, 103, 24347–24358. [Google Scholar] [CrossRef]
- Shan, X.; Li, Y.; Gao, Z.; Hua, J.; Huang, X.; Gong, W.; Qu, C.; Zhao, D.; Chen, J.; Huang, C.; et al. Co-seismic deformation characteristics of the 2022 Luding M_S6.8 earthquake and the risk of strong earthquakes in the vicinity. Sci. Bull. 2023, 68, 944–953. [Google Scholar]
- Harris, R.A.; Simpson, R.W. In the shadow of 1857—The effectof the great Ft. Tejon earthquake on subsequent earthquakes insouthern California. Geophys. Res. Lett. 1996, 23, 229–232. [Google Scholar] [CrossRef]
- Gülerce, Z.; Shah, S.T.; Menekşe, A.; Özacar, A.A.; Kaymakci, N.; Çetin, K. Probabilistic Seismic-Hazard Assessment for East Anatolian Fault Zone Using Planar Fault Source Models. Bull. Seism. Soc. Am. 2017, 107, 2353–2366. [Google Scholar] [CrossRef]
- Konca, A.Ö.; Karabulut, H.; Güvercin, S.E.; Eskiköy, F.; Özarpacı, S.; Özdemir, A.; Floyd, M.; Ergintav, S.; Doğan, U. From Interseismic Deformation with Near-Repeating Earthquakes to Co-Seismic Rupture: A Unified View of the 2020 Mw6. 8 Sivrice (Elazığ) Eastern Turkey Earthquake. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021830. [Google Scholar] [CrossRef]
- Metois, M.; Vigny, C.; Socquet, A. Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38–18 S). Pure Appl. Geophys. 2016, 173, 1431–1449. [Google Scholar] [CrossRef]
Orbit | Track | Azimuth Angle (°) | Incidence Angle (°) | Reference Image | Secondary Image |
---|---|---|---|---|---|
Ascending | T14 | −22 | 39 | 28 January 2023 | 9 February 2023 |
T116 | −22 | 39 | 4 February 2023 | 28 February 2023 | |
Descending | T21 | −103 | 39 | 29 January 2023 | 10 February 2023 |
Orbit | Track | Azimuth Angle (°) | Incidence Angle (°) | Reference Image | Secondary Image |
---|---|---|---|---|---|
Ascending | T14 | −22 | 39 | 28 January 2023 | 9 February 2023 |
T116 | −22 | 39 | 4 February 2023 | 28 February 2023 | |
Descending | T21 | −103 | 39 | 29 January 2023 | 10 February 2023 |
Track Profile | ASCT14 | ASCT16 | DSCT21 | |||
---|---|---|---|---|---|---|
AA1 | BB1 | AA1 | BB1 | AA1 | BB1 | |
max (m) | 1.8 | 1.7 | 1.4 | 0.9 | 0.9 | 3.4 |
min (m) | −3.2 | −1.8 | −1.5 | −2.4 | −1.1 | −1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, Y.; Fan, X.; Ma, C.; Shan, X. Coseismic Deformation, Fault Slip Distribution, and Coulomb Stress Perturbation of the 2023 Türkiye-Syria Earthquake Doublet Based on SAR Offset Tracking. Remote Sens. 2023, 15, 5443. https://doi.org/10.3390/rs15235443
Wang W, Liu Y, Fan X, Ma C, Shan X. Coseismic Deformation, Fault Slip Distribution, and Coulomb Stress Perturbation of the 2023 Türkiye-Syria Earthquake Doublet Based on SAR Offset Tracking. Remote Sensing. 2023; 15(23):5443. https://doi.org/10.3390/rs15235443
Chicago/Turabian StyleWang, Wan, Yunhua Liu, Xiaoran Fan, Chao Ma, and Xinjian Shan. 2023. "Coseismic Deformation, Fault Slip Distribution, and Coulomb Stress Perturbation of the 2023 Türkiye-Syria Earthquake Doublet Based on SAR Offset Tracking" Remote Sensing 15, no. 23: 5443. https://doi.org/10.3390/rs15235443
APA StyleWang, W., Liu, Y., Fan, X., Ma, C., & Shan, X. (2023). Coseismic Deformation, Fault Slip Distribution, and Coulomb Stress Perturbation of the 2023 Türkiye-Syria Earthquake Doublet Based on SAR Offset Tracking. Remote Sensing, 15(23), 5443. https://doi.org/10.3390/rs15235443