Optimizing Water Level Management Strategies to Strengthen Reservoir Support for Bird’s Migration Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.3. Bird Tracking Data
2.4. Data Processing
3. Results
3.1. Range and Spatiotemporal Distribution of Inundation Area
3.2. Patterns of Bird Habitat Utilization in Miyun Reservoir
4. Discussion
4.1. Optimizing Water Level Management Strategies in Reservoirs
4.2. Restoration of Waterbird Habitats: Evidence and Strategies
4.3. Implications of Reservoir Management for Global Bird Conservation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callaghan, C.T.; Nakagawa, S.; Cornwell, W.K. Global abundance estimates for 9,700 bird species. Proc. Natl. Acad. Sci. USA 2021, 118, e2023170118. [Google Scholar] [CrossRef]
- Dufour, P.; de Franceschi, C.; Doniol-Valcroze, P.; Jiguet, F.; Guéguen, M.; Renaud, J.; Lavergne, S.; Crochet, P.-A. A new westward migration route in an Asian passerine bird. Curr. Biol. 2021, 31, 5590–5596.e5594. [Google Scholar] [CrossRef]
- Flack, A.; Aikens, E.O.; Kölzsch, A.; Nourani, E.; Snell, K.R.; Fiedler, W.; Linek, N.; Bauer, H.-G.; Thorup, K.; Partecke, J.; et al. New frontiers in bird migration research. Curr. Biol. 2022, 32, R1187–R1199. [Google Scholar] [CrossRef]
- Jetz, W.; Tertitski, G.; Kays, R.; Mueller, U.; Wikelski, M. Biological Earth observation with animal sensors. Trends Ecol. Evol. 2022, 37, 719–724. [Google Scholar] [CrossRef]
- Hertel, A.G.; Niemelä, P.T.; Dingemanse, N.J.; Mueller, T. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 2020, 8, 30. [Google Scholar] [CrossRef]
- Nathan, R. An emerging movement ecology paradigm. Proc. Natl. Acad. Sci. USA 2008, 105, 19050–19051. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, A.; Ray, J.D.; Savage, A.; Mejeur, J.; Moscar, L.; Pearson, M.; Pearman, M.; Hvenegaard, G.T.; Mickle, N.; Applegate, K.; et al. Migratory stopover timing is predicted by breeding latitude, not habitat quality, in a long-distance migratory songbird. J. Ornithol. 2017, 158, 745–752. [Google Scholar] [CrossRef]
- Stutchbury, B.J.M.; Tarof, S.A.; Done, T.; Gow, E.; Kramer, P.M.; Tautin, J.; Fox, J.W.; Afanasyev, V. Tracking Long-Distance Songbird Migration by Using Geolocators. Science 2009, 323, 896. [Google Scholar] [CrossRef] [PubMed]
- Reed, W.L.; Clark, M.E. Timing of Breeding Determines Growth and Development in a Long-Distance Migratory Bird. J. Exp. Zool. Part A-Ecol. Genet. Physiol. 2016, 325, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Rushing, C.S.; Marra, P.P.; Dudash, M.R. Winter habitat quality but not long-distance dispersal influences apparent reproductive success in a migratory bird. Ecology 2016, 97, 1218–1227. [Google Scholar] [CrossRef]
- Menz, M.H.M.; Scacco, M.; Burki-Spycher, H.M.; Williams, H.J.; Reynolds, D.R.; Chapman, J.W.; Wikelski, M. Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth. Science 2022, 377, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Mallord, J.W.; Smith, K.W.; Bellamy, P.E.; Charman, E. Are changes in breeding habitat responsible for recent population changes of long-distance migrant birds? Bird Study 2016, 63, 250–261. [Google Scholar] [CrossRef]
- Dhanjal-Adams, K.L.; Klaassen, M.; Nicol, S.; Possingham, H.P.; Chadès, I.; Fuller, R.A. Setting conservation priorities for migratory networks under uncertainty. Conserv. Biol. 2017, 31, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Kirby, J.S.; Stattersfield, A.J.; Butchart, S.H.M.; Evans, M.I. Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conserv. Int. 2008, 18, S49–S73. [Google Scholar] [CrossRef]
- Fletcher, K.; Howarth, D.; Kirby, A.; Dunn, R.; Smith, A. Effect of climate change on breeding phenology, clutch size and chick survival of an upland bird. Ibis 2013, 155, 456–463. [Google Scholar] [CrossRef]
- Keith, D.A.; Mahony, M.; Hines, H.; Elith, J.; Regan, T.J.; Baumgartner, J.B.; Hunter, D.; Heard, G.W.; Mitchell, N.J.; Parris, K.M.; et al. Detecting Extinction Risk from Climate Change by IUCN Red List Criteria. Conserv. Biol. 2014, 28, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Morton, O.; Scheffers, B.R.; Haugaasen, T.; Edwards, D.P. Impacts of wildlife trade on terrestrial biodiversity. Nat. Ecol. Evol. 2021, 5, 540–548. [Google Scholar] [CrossRef]
- Monti, F.; Gremillet, D.; Sforzi, A.; Sammuri, G.; Dominici, J.M.; Bagur, R.T.; Navarro, A.M.; Fusani, L.; Duriez, O. Migration and wintering strategies in vulnerable Mediterranean Osprey populations. Ibis 2018, 160, 554–567. [Google Scholar] [CrossRef]
- Bennison, A.; Bearhop, S.; Bodey, T.W.; Votier, S.C.; Grecian, W.J.; Wakefield, E.D.; Hamer, K.C.; Jessopp, M. Search and foraging behaviors from movement data: A comparison of methods. Ecol. Evol. 2018, 8, 13–24. [Google Scholar] [CrossRef]
- Mazaris, A.D.; Almpanidou, V.; Giakoumi, S.; Katsanevakis, S. Gaps and challenges of the European network of protected sites in the marine realm. ICES J. Mar. Sci. 2018, 75, 190–198. [Google Scholar] [CrossRef]
- Montoya, J.M.; Pimm, S.L.; Sole, R.V. Ecological networks and their fragility. Nature 2006, 442, 259–264. [Google Scholar] [CrossRef]
- Fuller, M.R.; Doyle, M.W.; Strayer, D.L. Causes and consequences of habitat fragmentation in river networks. Ann. N. Y. Acad. Sci. 2015, 1355, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Yong, D.L.; Jain, A.; Liu, Y.; Iqbal, M.; Choi, C.-Y.; Crockford, N.J.; Millington, S.; Provencher, J. Challenges and opportunities for transboundary conservation of migratory birds in the East Asian-Australasian flyway. Conserv. Biol. 2018, 32, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.P.; Moore, J.N.; Casazza, M.L.; Coons, S.P. Functional Wetland Loss Drives Emerging Risks to Waterbird Migration Networks. Front. Ecol. Evol. 2022, 10, 844278. [Google Scholar] [CrossRef]
- Alerstam, T.; Backman, J. Ecology of animal migration. Curr. Biol. 2018, 28, R968–R972. [Google Scholar] [CrossRef] [PubMed]
- Haig, S.M.; Murphy, S.P.; Matthews, J.H.; Ivan, A.; Mohammad, S. Climate-Altered Wetlands Challenge Waterbird Use and Migratory Connectivity in Arid Landscapes. Sci Rep 2019, 9, 4666. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Acuna, V.; Datry, T.; Marshall, J.; Barceló, D.; Dahm, C.N.; Ginebreda, A.; McGregor, G.; Sabater, S.; Tockner, K.; Palmer, M.A. Why Should We Care About Temporary Waterways? Science 2014, 343, 1080–1081. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.B.D.; Stocker, Z.; Zhang, A.; Malhotra, J.R.; Melton, B.; Poulter, J.O.; Kaplan, K.K.; Goldewijk, S.; Siebert, T.; Minayeva, G.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Kunming-Montreal Global Biodiversity Framework. United Nations Environment Programme: Montreal, Canada, 2022. [Google Scholar]
- Liu, L.; Wang, H.-J.; Yue, Q. China’s coastal wetlands: Ecological challenges, restoration, and management suggestions. Reg. Stud. Mar. Sci. 2020, 37, 101337. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Gong, J.; Luo, F.; Pan, Y. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ. 2024, 910, 168676. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Cheng, L.; Song, Y. Water level management plan based on the ecological demands of wintering waterbirds at Shengjin Lake. Glob. Ecol. Conserv. 2021, 27, e01567. [Google Scholar]
- Zou, L.; Hu, B.; Qi, S.; Zhang, Q.; Ning, P. Spatiotemporal Variation of Siberian Crane Habitats and the Response to Water Level in Poyang Lake Wetland, China. Remote Sens. 2021, 13, 140. [Google Scholar] [CrossRef]
- Aharon-Rotman, Y.; McEvoy, J.; Zheng, Z.; Yu, H.; Wang, X.; Si, Y.; Xu, Z.; Yuan, Z.; Jeong, W.; Cao, L.; et al. Water level affects availability of optimal feeding habitats for threatened migratory waterbirds. Ecol. Evol. 2017, 7, 10440–10450. [Google Scholar] [CrossRef] [PubMed]
- Neumann, W.; Martinuzzi, S.; Estes, A.B.; Pidgeon, A.M.; Dettki, H.; Ericsson, G.; Radeloff, V.C. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Mov. Ecol. 2015, 3, 8. [Google Scholar] [CrossRef]
- Allen, A.M.; Singh, N.J. Linking Movement Ecology with Wildlife Management and Conservation. Front. Ecol. Evol. 2016, 3, 155. [Google Scholar] [CrossRef]
- McDuie, F.; Casazza, M.L.; Overton, C.T.; Herzog, M.P.; Hartman, C.A.; Peterson, S.H.; Feldheim, C.L.; Ackerman, J.T. GPS tracking data reveals daily spatio-ternporal movement patterns of waterfowl. Mov. Ecol. 2019, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Harcourt, R.; Sequeira, A.M.M.; Zhang, X.; Roquet, F.; Komatsu, K.; Heupel, M.; McMahon, C.; Whoriskey, F.; Meekan, M.; Carroll, G.; et al. Animal-Borne Telemetry: An Integral Component of the Ocean Observing Toolkit. Front. Mar. Sci. 2019, 6, 326. [Google Scholar] [CrossRef]
- Batbayar, N.; Yi, K.; Zhang, J.; Natsagdorj, T.; Damba, I.; Cao, L.; Fox, A.D. Combining Tracking and Remote Sensing to Identify Critical Year-Round Site, Habitat Use and Migratory Connectivity of a Threatened Waterbird Species. Remote Sens. 2021, 13, 4049. [Google Scholar] [CrossRef]
- Uden, D.R.; Allen, C.R.; Bishop, A.A.; Grosse, R.; Jorgensen, C.F.; LaGrange, T.G.; Stutheit, R.G.; Vrtiska, M.P. Predictions of future ephemeral springtime waterbird stopover habitat availability under global change. Ecosphere 2015, 6, 215. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Gu, Y.; Jiang, W.; Xue, Y.; Hu, Q.; LaGrange, T.; Bishop, A.; Drahota, J.; Li, R. Assessing Nebraska playa wetland inundation status during 1985–2015 using Landsat data and Google Earth Engine. Environ. Monit. Assess. 2016, 188, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.E.; Lei, J.L.; Ren, B.S.; Cao, R.; Yang, Z.; Wu, N.; Jia, Y. The Impacts of a Large Water Transfer Project on a Waterbird Community in the Receiving Dam: A Case Study of Miyun Reservoir, China. Remote Sens. 2022, 14, 417. [Google Scholar] [CrossRef]
- da Silva, T.L.; Oliveira, M.D.; Rocha, R.J.D.; Pitelli, R.A. Water-level controlled reservoir as refugia for waterbirds in an urban landscape. Ornithol. Res. 2020, 28, 151–160. [Google Scholar] [CrossRef]
- Farley, E.B.; Schummer, M.L.; Leopold, D.J.; Coluccy, J.M.; Tozer, D.C. Influence of water level management on vegetation and bird use of restored wetlands in the Montezuma Wetlands Complex. Wildl. Biol. 2022, 2022, e01016. [Google Scholar] [CrossRef]
- Schuster, R.; Wilson, S.; Rodewald, A.D.; Arcese, P.; Fink, D.; Auer, T.; Bennett, J.R. Optimizing the conservation of migratory species over their full annual cycle. Nat. Commun. 2019, 10, 1754. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Liu, D.; Tian, B.; Yuan, X.; Bo, S.; Ma, Q.; Wu, W.; Zhao, Z.; Zhang, L.; Keesing, J.K. A solution for restoration of critical wetlands and waterbird habitats in coastal deltaic systems. J. Environ. Manage. 2022, 302, 113996. [Google Scholar] [CrossRef]
- Xu, X.; Chen, M.; Yang, G.; Jiang, B.; Zhang, J. Wetland ecosystem services research: A critical review. Glob. Ecol. Conserv. 2020, 22, e01027. [Google Scholar] [CrossRef]
- Pascual, U.P.; Balvanera, C.B.; Anderson, R.; Chaplin-Kramer, M.; Christie, D.; González-Jiménez, A.; Martin, C.M.; Raymond, M.; Termansen, A.; Vatn, S.; et al. Diverse values of nature for sustainability. Nature 2023, 620, 813–823. [Google Scholar] [CrossRef]
Year | Number of Tracked Birds | Number of Birds Alive | Survival Rate | Number of Birds that Visited Miyun Reservoir | The Ratio of Birds that Visited Miyun Reservoir |
---|---|---|---|---|---|
2017 | 19 | 19 | 100% | 14 | 74% |
2018 | 3 | 19 | 86% | 15 | 79% |
2019 | 17 | 32 | 82% | 24 | 75% |
2020 | - | 26 | 67% | 23 | 88% |
2021 | - | 19 | 49% | 13 | 68% |
2022 | - | 16 | 41% | 9 | 56% |
2023 | - | 12 | 31% | 7 | 58% |
Total | 39 | 32 | 82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, K.; Meng, F.; Gu, D.; Miao, Q. Optimizing Water Level Management Strategies to Strengthen Reservoir Support for Bird’s Migration Network. Remote Sens. 2023, 15, 5508. https://doi.org/10.3390/rs15235508
Yi K, Meng F, Gu D, Miao Q. Optimizing Water Level Management Strategies to Strengthen Reservoir Support for Bird’s Migration Network. Remote Sensing. 2023; 15(23):5508. https://doi.org/10.3390/rs15235508
Chicago/Turabian StyleYi, Kunpeng, Fanjuan Meng, Dehai Gu, and Qingyuan Miao. 2023. "Optimizing Water Level Management Strategies to Strengthen Reservoir Support for Bird’s Migration Network" Remote Sensing 15, no. 23: 5508. https://doi.org/10.3390/rs15235508
APA StyleYi, K., Meng, F., Gu, D., & Miao, Q. (2023). Optimizing Water Level Management Strategies to Strengthen Reservoir Support for Bird’s Migration Network. Remote Sensing, 15(23), 5508. https://doi.org/10.3390/rs15235508