Mapping Main Grain Crops and Change Analysis in the West Liaohe River Basin with Limited Samples Based on Google Earth Engine
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Data Preprocessing and Cropland Extraction
3.2. Multidimensional Feature Construction
3.3. Random Forest Classifier and Feature Selection
3.4. Multi-year Crop Classification Strategy
3.5. Classification Accuracy Evaluation
4. Results
4.1. Feature Importance Analysis and Feature Selection
4.2. Classification Accuracy and Crop Distribution Characteristics
4.3. Temporal Changes in the Area of Main Grain Crops
4.4. Spatial Changes in Main Grain Crops
5. Discussion
5.1. The Selection of Classification Features and Classifiers
5.2. The Characteristics and Influencing Factors of Classification Accuracy
5.3. Causes of Changes in the Area of Mian Grain Crops
5.4. The Advantages and Limits of the Study
6. Conclusions
- (1)
- Constructing time series NDVI, phenology, topography, reflectance, and spectral index as multi-dimensional features could differentiate subtle differences among crops from various aspects, and these features were suitable and simple to calculate on the GEE. Recursive feature elimination with random forest algorithms was utilized for feature selection, ensuring that the model completes crop classification with higher efficiency and accuracy.
- (2)
- This study augmented the original sample size according to the similarity of time series NDVI curves, migrated the random forest model, and reselected samples for other years based on model accuracy scores, which effectively overcame the problem of lacking samples. It was feasible to realize a multi-year crop classification with higher accuracies in the case of limited samples. The case study showed that the classification results were accurate and reliable in showing crop layout and area by utilizing confusion matrices and statistical metrics for validation.
- (3)
- The main grain crops in the WLRB were predominantly distributed in the northeastern and southern plains with lower elevations, forming strip-like patterns along both sides of the rivers. Maize was the most predominant crop type in the basin with a wide distribution. Soybean and rice cultivation areas were relatively small.
- (4)
- The planting area of main grain crops in the WLRB exhibited an increasing trend from 2014 to 2020. Maize was the primary crop type driving the increase in crop area, soybean experienced the most dramatic increase, while rice remained relatively stable. National policies primarily influenced the variations of planting structure in maize and soybean.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Huang, Q.; Xiong, Y.; Yang, Q.; Li, H.; Hou, Z.; Huang, G. Tracking the spatio-temporal change of the main food crop planting structure in the Yellow River Basin over 2001–2020. Comput. Electron. Agric. 2023, 212, 108102. [Google Scholar] [CrossRef]
- Song, T.; Wang, Y.; Gao, C.; Chen, H.; Li, J. MSLAN: A Two-Branch Multidirectional Spectral–Spatial LSTM Attention Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5528814. [Google Scholar] [CrossRef]
- Dong, S.W.; Sun, D.F.; Li, H. Crop Decision Tree Classification Extraction Based on MODIS NDVI in Beijing. Adv. Mater. Res. 2014, 955–959, 787–790. [Google Scholar] [CrossRef]
- Zhong, H.M.; Liu, Z.J.; Wang, J.Y. Understanding impacts of cropland pattern dynamics on grain production in China: A integrated analysis by fusing statistical data and satellite-observed data. J. Environ. Manag. 2022, 313, 114988. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Kovacs, J.M.; Shang, J.; McNairn, H.; Walters, D.; Ma, B.; Geng, X. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS J. Photogramm. Remote Sens. 2014, 96, 38–46. [Google Scholar] [CrossRef]
- Guo, Z.C.; Xie, Y.W.; Guo, H.; Zhang, X.Y.; Zhang, X.H.; Xi, G.L.; Ma, C.H.; Duan, H.M. Is land degradation worsening in Northern China? Quantitative evidence and enlightenment from satellites. Land Degrad. Dev. 2023, 34, 1662–1680. [Google Scholar] [CrossRef]
- Heino, M.; Puma, M.J.; Ward, P.J.; Gerten, D.; Heck, V.; Siebert, S.; Kummu, M. Two-thirds of global cropland area impacted by climate oscillations. Nat. Commun. 2018, 9, 1257. [Google Scholar] [CrossRef]
- Liu, H.X.; Soares, B.S.; Leite, A.T.; Zhang, S.H.; Du, J.Z.; Yi, Y.J. How to balance land demand conflicts to guarantee sustainable land development. iScience 2023, 26, 106641. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H. Making the Paris agreement climate targets consistent with food security objectives. Glob. Food Secur.-Agric. 2019, 23, 93–103. [Google Scholar] [CrossRef]
- Zang, Y.; Qiu, Y.; Chen, X.; Chen, J.; Yang, W.; Liu, Y.; Peng, L.; Shen, M.; Cao, X. Mapping rapeseed in China during 2017–2021 using Sentinel data: An automated approach integrating rule-based sample generation and a one-class classifier (RSG-OC). GIScience Remote Sens. 2023, 60, 2163576. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Skakun, S.; Roger, J.C.; Becker-Reshef, I.; Murphy, E.; Justice, C. Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. Int. J. Appl. Earth Obs. 2019, 76, 112–127. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Gomez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mandavi, S.; Brisco, B. Spectral analysis of wetlands using multi-source optical satellite imagery. ISPRS J. Photogramm. Remote Sens. 2018, 144, 119–136. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, R.; Lv, J.C.; Wu, R.Z.; Zhang, H.S.; Chen, J.; Zhang, B.; Ouyang, X.Y.; Liu, G.X. Vegetation descriptors from Sentinel-1 SAR data for crop growth monitoring. ISPRS J. Photogramm. Remote Sens. 2023, 203, 86–114. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Revealing annual crop type distribution and spatiotemporal changes in Northeast China based on Google Earth Engine. Remote Sens. 2022, 14, 4056. [Google Scholar] [CrossRef]
- Weigand, M.; Staab, J.; Wurm, M.; Taubenböck, H. Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int. J. Appl. Earth Obs. 2020, 88, 102065. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef]
- Fatchurrachman; Rudiyanto; Soh, N.C.; Shah, R.M.; Giap, S.G.E.; Setiawan, B.I.; Minasny, B. High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine. Remote Sens. 2022, 14, 1875. [Google Scholar] [CrossRef]
- Zhang, W.T.; Liu, L.; Bai, Y.; Li, Y.B.; Guo, J. Crop classification based on multi-temporal PolSAR images with a single tensor network. Pattern Recognit. 2023, 143, 109773. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Wang, L.; Diao, C.Y.; Xian, G.; Yin, D.M.; Lu, Y.; Zou, S.Y.; Erickson, T.A. A summary of the special issue on remote sensing of land change science with Google earth engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yamashiki, Y.; Canales Torres, M.A.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Zhong, L.H.; Hu, L.N.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Wang, H.B.; Chang, W.Q.; Yao, Y.; Yao, Z.Y.; Zhao, Y.Y.; Li, S.M.; Liu, Z.; Zhang, X.D. Cropformer: A new generalized deep learning classification approach for multi-scenario crop classification. Front. Plant Sci. 2023, 14, 1130659. [Google Scholar] [CrossRef]
- Fekri, E.; Latifi, H.; Amani, M.; Zobeidinezhad, A. A Training Sample Migration Method for Wetland Mapping and Monitoring Using Sentinel Data in Google Earth Engine. Remote Sens. 2021, 13, 4169. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Yu, Y.; Xi, X.; Ren, T.; Zhao, Y.; Zhu, D.; Zhu, A.X. Cross-Year Reuse of Historical Samples for Crop Mapping Based on Environmental Similarity. Front. Plant Sci. 2021, 12, 761148. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Zhang, L.; Han, J.; Cao, J.; Zhang, J. Developing High-Resolution Crop Maps for Major Crops in the European Union Based on Transductive Transfer Learning and Limited Ground Data. Remote Sens. 2022, 14, 1809. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Liu, D.; Xiong, Q.; Yang, N.; Ren, T.; Zhang, C.; Zhang, X.; Li, S. Crop Mapping Based on Historical Samples and New Training Samples Generation in Heilongjiang Province, China. Sustainability 2019, 11, 5052. [Google Scholar] [CrossRef]
- Hao, P.; Di, L.; Zhang, C.; Guo, L. Transfer Learning for Crop classification with Cropland Data Layer data (CDL) as training samples. Sci. Total Environ. 2020, 733, 138869. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.B.; Wang, K.; Dang, D.L.; Gong, J.R.; Wang, H.; Lou, A.R. Optimizing landscape patterns to maximize ecological-production benefits of water-food relationship: Evidence from the West Liaohe River basin, China. Land Degrad. Dev. 2023, 34, 3388–3405. [Google Scholar] [CrossRef]
- Liu, D.; Chen, J.; Ouyang, Z. Responses of landscape structure to the ecological restoration programs in the farming-pastoral ecotone of Northern China. Sci. Total Environ. 2020, 710, 136311. [Google Scholar] [CrossRef]
- Li, X.; Foody, G.M.; Boyd, D.S.; Ge, Y.; Zhang, Y.; Du, Y.; Ling, F. SFSDAF: An enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion. Remote Sens. Environ. 2020, 237, 111537. [Google Scholar] [CrossRef]
- Liu, M.; Yang, W.; Zhu, X.; Chen, J.; Chen, X.; Yang, L.; Helmer, E.H. An Improved Flexible Spatiotemporal DAta Fusion (IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation index time series. Remote Sens. Environ. 2019, 227, 74–89. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, R.; Chen, J.; Liu, L.; Matsushita, B. A practical approach to reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky–Golay filter. ISPRS J. Photogramm. Remote Sens. 2021, 180, 174–190. [Google Scholar] [CrossRef]
- Su, T.F.; Zhang, S.W. Object-based crop classification in Hetao plain using random forest. Earth Sci. Inform. 2021, 14, 119–131. [Google Scholar] [CrossRef]
- Li, F.Y.; Zheng, H.F.; Li, X.M.; Yang, F. Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model. Appl. Energy 2021, 303, 117623. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S. An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inform. Sci. 2016, 340, 250–261. [Google Scholar] [CrossRef]
- Song, G.; Ren, G.F. Spatial response of cultivated land use efficiency to the maize structural adjustment policy in the “Sickle Bend” region of China: An empirical study from the cold area of northeast. Land Use Policy 2022, 123, 106421. [Google Scholar] [CrossRef]
- Liu, D.; Liu, S.; Wen, X. Spatial-temporal evolution of grain production structure in Northeast China. Econ. Geogr. 2019, 39, 163–170. [Google Scholar]
- Liu, W.X.; He, X.L. Effects of maize policy reform in northeast China. Manag. Theory Stud. Rural Bus. Infrastruct. Dev. 2018, 40, 348–360. [Google Scholar] [CrossRef]
- Gong, B.; Yang, N.; Liu, S. Implementation effect and improvement of corn producer subsidy policy. Issues Agric. Econ. 2021, 10, 127–138. [Google Scholar]
- Wang, M.; Liu, D.; Wang, Z.X.; Li, Y.T. Structural evolution of global soybean trade network and the implications to China. Foods 2023, 12, 1550. [Google Scholar] [CrossRef]
- Wu, F.; Geng, Y.; Zhang, Y.; Ji, C.; Chen, Y.; Sun, L.; Xie, W.; Ali, T.; Fujita, T. Assessing sustainability of soybean supply in China: Evidence from provincial production and trade data. J. Clean. Prod. 2020, 244, 119006. [Google Scholar] [CrossRef]
- Guo, S.J.; Lv, X.Y.; Hu, X.D. Farmers’ land allocation responses to the soybean rejuvenation plan: Evidence from “typical farm” in Jilin, China. China Agric. Econ. Rev. 2021, 13, 705–719. [Google Scholar] [CrossRef]
- Wen, T.; Li, P.; Chen, L.; An, Y.B. Market reactions to trade friction between China and the United States: Evidence from the soybean futures market. J. Manag. Sci. Eng. 2023, 8, 325–341. [Google Scholar] [CrossRef]
- Guo, J.P.; Zhao, J.F.; Wu, D.R.; Mu, J.; Xu, Y.H. Attribution of maize yield increase in China to climate change and technological advancement between 1980 and 2010. J. Meteorol. Res. 2014, 28, 1168–1181. [Google Scholar] [CrossRef]
Data Source | Feature Name | The Number of Features |
---|---|---|
Landsat 8 OLI, MODIS | Time series NDVI | 34 |
Time series NDVI | Phenology | 7 |
Landsat 8 OLI | Spectral index | 48 |
Landsat 8 OLI | Relectence | 48 |
SRTM DEM | Topography | 2 |
Total | 139 |
Year | Crop | Classification Area (km2) | Error (%) | R2 | MA | UA | OA | Kappa Coefficient |
---|---|---|---|---|---|---|---|---|
2014 | Maize | 14,463.31 | 4.76 | 0.89 | 1 | 0.97 | 0.94 | 0.92 |
Soybean | 336.82 | 7.00 | 0.42 | 0.92 | 0.87 | |||
Rice | 390.16 | −15.79 | 0.94 | 1 | 1 | |||
2015 | Maize | 15,412.86 | 4.17 | 0.80 | 0.96 | 0.95 | 0.93 | 0.90 |
Soybean | 166.10 | 13.28 | 0.38 | 0.80 | 0.85 | |||
Rice | 396.35 | −0.11 | 0.96 | 0.99 | 0.98 | |||
2016 | Maize | 13,912.68 | 10.67 | 0.87 | 0.91 | 0.99 | 0.96 | 0.95 |
Soybean | 278.90 | 2.96 | 0.73 | 1 | 0.96 | |||
Rice | 444.65 | −14.60 | 0.97 | 1 | 1 | |||
2017 | Maize | 17,193.45 | 0.08 | 0.98 | 0.91 | 0.95 | 0.94 | 0.92 |
Soybean | 348.42 | 5.00 | 0.93 | 0.99 | 0.91 | |||
Rice | 492.78. | −7.30 | 0.97 | 1 | 1 | |||
2018 | Maize | 17,471.70 | 3.00 | 0.98 | 0.98 | 1 | 0.98 | 0.98 |
Soybean | 870.20 | 0.90 | 0.70 | 1 | 0.98 | |||
Rice | 463.67 | −16.26 | 0.99 | 1 | 0.98 | |||
2019 | Maize | 17,702.5 | 5.75 | 0.97 | 1 | 0.97 | 0.97 | 0.96 |
Soybean | 1067.42 | 9.44 | 0.74 | 0.91 | 0.94 | |||
Rice | 441.62 | −16.32 | 0.99 | 1 | 1 | |||
2020 | Maize | 17,880.21 | 7.83 | 0.92 | 0.92 | 0.97 | 0.94 | 0.92 |
Soybean | 1177.59 | 25.41 | 0.81 | 0.95 | 0.86 | |||
Rice | 398.23 | −26.52 | 0.99 | 0.99 | 1 |
2014 | Non-Cropland (km2) | Maize (km2) | Soybean (km2) | Rice (km2) | Other (km2) |
---|---|---|---|---|---|
2020 | |||||
Non-cropland | 104,476.10 | 2369.80 | 157.13 | 115.66 | 3529.72 |
Maize | 5607.55 | 10,571.16 | 123.02 | 75.13 | 1490.02 |
Soybean | 603.78 | 414.45 | 23.95 | 2.02 | 130.58 |
Rice | 126.72 | 70.47 | 0.29 | 191.73 | 7.69 |
Other | 3118.45 | 1032.17 | 33.65 | 5.67 | 1633.23 |
Sets | Feature Combination | The Number of Features |
---|---|---|
1 | Reflectance | 48 |
2 | Spectra index | 48 |
3 | Reflectance + spectra index | 106 |
4 | Reflectance + spectra index + NDVI | 130 |
5 | All features | 139 |
6 | Optimized features | 30 |
Condition | Crop | MA | UA | OA | Kappa Coefficient |
---|---|---|---|---|---|
Without augmentation | maize | 0.83 | 0.96 | 0.87 | 0.79 |
soybean | 0.9 | 0.69 | |||
rice | 1 | 1 | |||
With augmentation | maize | 0.91 | 0.95 | 0.94 | 0.92 |
soybean | 0.99 | 0.91 | |||
rice | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, D.; Wang, M. Mapping Main Grain Crops and Change Analysis in the West Liaohe River Basin with Limited Samples Based on Google Earth Engine. Remote Sens. 2023, 15, 5515. https://doi.org/10.3390/rs15235515
Wang Z, Liu D, Wang M. Mapping Main Grain Crops and Change Analysis in the West Liaohe River Basin with Limited Samples Based on Google Earth Engine. Remote Sensing. 2023; 15(23):5515. https://doi.org/10.3390/rs15235515
Chicago/Turabian StyleWang, Zhenxing, Dong Liu, and Min Wang. 2023. "Mapping Main Grain Crops and Change Analysis in the West Liaohe River Basin with Limited Samples Based on Google Earth Engine" Remote Sensing 15, no. 23: 5515. https://doi.org/10.3390/rs15235515
APA StyleWang, Z., Liu, D., & Wang, M. (2023). Mapping Main Grain Crops and Change Analysis in the West Liaohe River Basin with Limited Samples Based on Google Earth Engine. Remote Sensing, 15(23), 5515. https://doi.org/10.3390/rs15235515