An Efficient BP Algorithm Based on TSU-ICSI Combined with GPU Parallel Computing
Abstract
:1. Introduction
2. BP Algorithm Based on TSU-ICSI
2.1. Signal Model and Algorithm Process
2.2. TSU-ICSI Method
2.2.1. Interpolation Method
2.2.2. Analysis of Computational Complexity for Interpolation Methods
3. Efficient Implementation of the GPU-Based TSU-ICSI BP Algorithm
4. Experimental Validation and Analysis
4.1. Simulation Validation
4.1.1. Simulation Parameters
4.1.2. Simulation Results
4.2. Validation and Analysis of Measured Data
4.2.1. Measured Data Parameters
4.2.2. Analysis of Measured Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiley, C.A. Synthetic Aperture Radars. IEEE Trans. Aerosp. Electron. Syst. 1985, AES-21, 440–443. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Chen, M.; Qiu, X.; Li, R.; Li, W.; Fu, K. Analysis and Compensation for Systematical Errors in Airborne Microwave Photonic SAR Imaging by 2-D Autofocus. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2221–2236. [Google Scholar] [CrossRef]
- Li, R.; Li, W.; Dong, Y.; Wen, Z.; Zhang, H.; Sun, W.; Mo, Z. PFDIR—A Wideband Photonic-Assisted SAR System. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4333–4346. [Google Scholar] [CrossRef]
- Deng, Y.; Xing, M.; Sun, G.C.; Liu, W.; Li, R.; Wang, Y. A Processing Framework for Airborne Microwave Photonic SAR with Resolution up to 0.03 m: Motion Estimation and Compensation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5121017. [Google Scholar] [CrossRef]
- Farquharson, G.; Woods, W.; Stringham, C.; Sankarambadi, N.; Riggi, L. The Capella Synthetic Aperture Radar Constellation. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27 July 2018; pp. 1873–1876. [Google Scholar] [CrossRef]
- Castelletti, D.; Farquharson, G.; Brown, J.; De, S.; Yague-Martinez, N.; Stringham, C.; Yalla, G.; Villarreal, A. Capella Space VHR SAR Constellation: Advanced Tasking Patterns and Future Capabilities. In Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022), Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4137–4140. [Google Scholar] [CrossRef]
- Ferro-Famil, L.; Tebaldini, S.; Davy, M.; Leconte, C.; Boutet, F. Very high-resolution three-dimensional imaging of natural environments using a tomographic ground-based SAR system. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), Hague, The Netherlands, 6–11 April 2014; pp. 3221–3224. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, Z.; Fu, D.; Huang, Y.; Li, Q.; Zhang, X.; Wan, J. Back-Projection Imaging for Synthetic Aperture Radar with Topography Occlusion. Remote Sens. 2023, 15, 726. [Google Scholar] [CrossRef]
- Yegulalp, A.F. Fast backprojection algorithm for synthetic aperture radar. In Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No. 99CH36249), Waltham, MA, USA, 22 April 1999; pp. 60–65. [Google Scholar] [CrossRef]
- Ulander, L.M.H.; Hellsten, H.; Stenstrom, G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 760–776. [Google Scholar] [CrossRef]
- Dong, Q.; Sun, G.-C.; Yang, Z.; Guo, L.; Xing, M. Cartesian Factorized Backprojection Algorithm for High-Resolution Spotlight SAR Imaging. IEEE Sens. J. 2018, 18, 1160–1168. [Google Scholar] [CrossRef]
- Xu, G.; Zhou, S.; Yang, L.; Deng, S.; Wang, Y.; Xing, M. Efficient Fast Time-Domain Processing Framework for Airborne Bistatic SAR Continuous Imaging Integrated with Data-Driven Motion Compensation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5208915. [Google Scholar] [CrossRef]
- Hu, X.; Xie, H.; Zhang, L.; Hu, J.; He, J.; Yi, S.; Jiang, H.; Xie, K. Fast Factorized Backprojection Algorithm in Orthogonal Elliptical Coordinate System for Ocean Scenes Imaging Using Geosynchronous Spaceborne–Airborne VHF UWB Bistatic SAR. Remote Sens. 2023, 15, 2215. [Google Scholar] [CrossRef]
- Stringham, C.; Long, D.G. GPU Processing for UAS-Based LFM-CW Stripmap SAR. Photogramm. Eng. Remote Sens. 2014, 80, 1107–1115. [Google Scholar] [CrossRef]
- Wijayasiri, A.; Banerjee, T.; Ranka, S.; Sahni, S.; Schmalz, M. Multiobjective Optimization of SAR Reconstruction on Hybrid Multicore Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4674–4688. [Google Scholar] [CrossRef]
- Lee, S.; Ban, I.; Lee, M.; Jung, Y.; Lee, W. Architecture Exploration of a Backprojection Algorithm for Real-Time Video SAR. Sensors 2021, 21, 8258. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Guo, S.; Jiang, S.; Zhou, X.; Wang, X.; Luo, Y.; Yu, Z.; Zhang, Z.; Deng, Y. Parallel Optimisation and Implementation of a Real-Time Back Projection (BP) Algorithm for SAR Based on FPGA. Sensors 2022, 22, 2292. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Liu, Y.; Chen, X.; Cheng, W. Scene optimization of GPU-based back-projection algorithm. J. Supercomput. 2023, 79, 4192–4214. [Google Scholar] [CrossRef]
- Capozzoli, A.; Curcio, C.; Liseno, A. Fast GPU-based interpolation for SAR backprojection. Prog. Electromagn. Res. 2013, 133, 259–283. [Google Scholar] [CrossRef]
- Fourmont, K. Non-Equispaced Fast Fourier Transforms with Applications to Tomography. J. Fourier Anal. Appl. 2003, 9, 431–450. [Google Scholar] [CrossRef]
- Breglia, A.; Capozzoli, A.; Curcio, C.; Liseno, A. NUFFT-Based Interpolation in Backprojection Algorithms. IEEE Geosci. Remote Sens. Lett. 2021, 18, 2117–2121. [Google Scholar] [CrossRef]
- Lin, S.C.; Chuang, K.; Chen, J.H. Efficient implementation of cubic spline interpolator. In Proceedings of the 2020 IEEE Radio and Wireless Symposium, San Antonio, TX, USA, 30 March 2020; pp. 287–290. [Google Scholar] [CrossRef]
- Lin, S.C.; Chuang, K.; Chang, C.W.; Chen, J.H. Efficient interpolation method for wireless communications and signal processing applications. IEEE Trans. Microw. Theory Tech. 2021, 69, 2753–2761. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Carrier frequency | 9.4 GHz |
Signal bandwidth | 100 MHz |
Sampling frequency | 120 MHz |
Transmitted pulse duration | 10 μs |
Near range | 29.12560 km |
Altitude | 10 km |
Effective radar velocity | 250 m/s |
Doppler bandwidth | 433 Hz |
Pulse repetition frequency | 600 Hz |
Azimuth beamwidth | 1.624° |
Squint angle | 0° |
Parameter | Value |
---|---|
Carrier frequency | 15.2 GHz |
Signal bandwidth | 600 MHz |
Sampling frequency | 625 MHz |
Transmitted pulse duration | 28 μs |
Near range | 4747.1245 km |
Doppler bandwidth | 245.0095 Hz |
Pulse repetition frequency | 625 Hz |
Azimuth beamwidth | 3° |
Squint angle | 0° |
Parameter | Value |
---|---|
Carrier frequency | 16.7 GHz |
Signal bandwidth | 600 MHz |
Sampling frequency | 800 MHz |
Transmitted pulse duration | 53.92 μs |
Near range | 640.7464 km |
Pulse repetition frequency | 6843.6901 Hz |
Squint angle | 0° |
GPU Parallel Algorithms | The Proposed GPU Efficient Implementation Method | Conventional GPU Parallel Method |
---|---|---|
BP algorithm’s GPU runtime based on TSU-ICSI (s) | 152 | 273 |
BP algorithm’s GPU runtime based on 16-point sinc interpolation (s) | 477 | 856 |
BP algorithm’s GPU runtime based on 32-point sinc interpolation (s) | 848 | 1515 |
SAR Platform | Airborne | Spaceborne |
---|---|---|
Imaging mode | Stripmap mode | Spotlight mode |
) | 10,000 × 8000 | 10,000 × 57,600 |
) | 6000 × 6000 | 6000 × 6000 |
Size of image grid (m) | 0.1 | 0.3 |
Number of azimuth points within synthetic aperture time | 4043 | 10,000 |
BP algorithm’s GPU runtime based on TSU-ICSI (s) | 152 | 223 |
BP algorithm’s GPU runtime based on 16-point sinc interpolation (s) | 477 | 1126 |
BP algorithm’s GPU runtime based on 32-point sinc interpolation (s) | 848 | 2150 |
SAR Platform | Airborne | Spaceborne |
---|---|---|
Number of azimuth points within synthetic aperture time | 4043 | 10,000 |
BP algorithm’s GPU runtime based on 16-point sinc interpolation/BP algorithm’s GPU runtime based on TSU-ICSI | 3.1382 | 5.0493 |
BP algorithm’s GPU runtime based on 32-point sinc interpolation/BP algorithm’s GPU runtime based on TSU-ICSI | 5.5789 | 9.6413 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Qiu, X.; Yang, J.; Meng, D.; Huang, L.; Song, S. An Efficient BP Algorithm Based on TSU-ICSI Combined with GPU Parallel Computing. Remote Sens. 2023, 15, 5529. https://doi.org/10.3390/rs15235529
Li Z, Qiu X, Yang J, Meng D, Huang L, Song S. An Efficient BP Algorithm Based on TSU-ICSI Combined with GPU Parallel Computing. Remote Sensing. 2023; 15(23):5529. https://doi.org/10.3390/rs15235529
Chicago/Turabian StyleLi, Ziya, Xiaolan Qiu, Jun Yang, Dadi Meng, Lijia Huang, and Shujie Song. 2023. "An Efficient BP Algorithm Based on TSU-ICSI Combined with GPU Parallel Computing" Remote Sensing 15, no. 23: 5529. https://doi.org/10.3390/rs15235529
APA StyleLi, Z., Qiu, X., Yang, J., Meng, D., Huang, L., & Song, S. (2023). An Efficient BP Algorithm Based on TSU-ICSI Combined with GPU Parallel Computing. Remote Sensing, 15(23), 5529. https://doi.org/10.3390/rs15235529