Detection of Atmospheric Hydrofluorocarbon-22 with Ground-Based Remote High-Resolution Fourier Transform Spectroscopy over Hefei and an Estimation of Emissions in the Yangtze River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. HCFC-22 Retrieval Strategy
2.3. Typical Spectral Retrieval of HCFC-22
2.4. ACE (Atmospheric Chemistry Experience) Satellite Data
2.5. Atmospheric Transport Simulation
2.6. Inverse Modeling
2.7. The Determination of the Baseline of the Dry Air Average Mole Fractions
3. Results
3.1. Annual Trend and Seasonal Cycle
3.2. A Comparison with Satellite Data
3.3. The Emission Estimations of HCFC-22 in the Yangtze River Delta
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molina, M.J.; Rowland, F.S. Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom-Catalysed Destruction of Ozone. Nature 1974, 249, 810–812. [Google Scholar] [CrossRef]
- Ko, M.; Newman, P.; Reimann, S.; Strahan, S.; Plumb, R.; Stolarski, R.; Burkholder, J.; Mellouki, W.; Engel, A.; Atlas, E. SPARC Report on Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species. 2013, p. 256. Available online: www.sparc-climate.org/publications/sparc-reports/ (accessed on 1 March 2023).
- WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion: 2018; Report No. 58; Global Ozone Research and Monitoring Project: Geneva, Switzerland, 2018; p. 588. [Google Scholar]
- Wu, J.; Li, T.; Wang, J.; Zhang, D.Y.; Peng, L. Establishment of HCFC-22 National-Provincial-Gridded Emission Inventories in China and the Analysis of Emission Reduction Potential. Environ. Sci. Technol. 2022, 56, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Yao, B.; Vollmer, M.K.; Reimann, S.; Liu, L.; Chen, L.; Prinn, R.G.; Hu, J. Changes in HCFC Emissions in China during 2011–2017. Geophys. Res. Lett. 2019, 46, 10034–10042. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, H.H.; Yao, B.; Pu, J.J.; Jiang, Y.J.; Ma, Q.L.; Fang, X.K.; O’Doherty, S.; Chen, L.Q.; He, J. Estimate of hydrochlorofluorocarbon emissions during 2011–2018 in the Yangtze River Delta, China. Environ. Pollut. 2022, 307, 119517. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Henne, S.; Yao, B.; Vollmer, M.K.; Zhou, L.; Li, Y. Estimating emissions of HCFC-22 and CFC-11 in China by atmospheric observations and inverse modeling. Sci. China Chem. 2012, 55, 2233–2241. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Simpson, I.J.; Barletta, B.; Blake, D.R.; Meinardi, S.; Louie, P.K.K.; Zhao, X.; Shao, M.; Zhong, L.; et al. Ambient CFCs and HCFC-22 observed concurrently at 84 sites in the Pearl River Delta region during the 2008–2009 grid studies. J. Geophys. Res. Atmos. 2014, 119, 7699–7717. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, B.; Vollmer, M.K.; Montzka, S.A.; Muhle, J.; Weiss, R.F.; O’Doherty, S.; Li, Y.; Fang, S.; Reimann, S. Ambient mixing ratios of atmospheric halogenated compounds at five background stations in China. Atmos. Environ. 2017, 160, 55–69. [Google Scholar] [CrossRef]
- Wetzel, G.; Hopfner, M.; Oelhaf, H.; Friedl-Vallon, F.; Kleinert, A.; Maucher, G.; Sinnhuber, M.; Abalichin, J.; Dehn, A.; Raspollini, P. Long-term validation of MIPAS ESA operational products using MIPAS-Bmeasurements. Atmos. Meas. Tech. 2022, 15, 6669–6704. [Google Scholar] [CrossRef]
- Moore, D.P.; Remedios, J.J. Growth rates of stratospheric HCFC-22. Atmos. Chem. Phys. 2008, 8, 73–82. [Google Scholar] [CrossRef]
- Cai, S.; Dudhia, A. Analysis of new species retrieved from MIPAS. Ann. Geophys. 2013, 56, 6340. [Google Scholar] [CrossRef]
- Nassar, R.; Bernath, P.F.; Boone, C.D.; McLeod, S.D.; Skelton, R.; Walker, K.A.; Rinsland, C.P.; Duchatelet, P. A global inventory of stratospheric fluorine in 2004 based on Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) measurements. J. Geophys. Res. Atmos. 2006, 111, D22313. [Google Scholar] [CrossRef]
- Nassar, R.; Bernath, P.F.; Boone, C.D.; Clerbaux, C.; Coheur, P.F.; Dufour, G.; Froidevaux, L.; Mahieu, E.; McConnell, J.C.; McLeod, S.D.; et al. A global inventory of stratospheric chlorine in 2004. J. Geophys. Res. Atmos. 2006, 111, D22312. [Google Scholar] [CrossRef]
- Brown, A.T.; Chipperfield, M.P.; Boone, C.; Wilson, C.; Walker, K.A.; Bernath, P.F. Trends in atmospheric halogen containing gases since 2004. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2552–2566. [Google Scholar] [CrossRef]
- Chen, A.; Chen, D.; Hu, X.Y.; Harth, C.M.; Young, D.; Muhle, J.; Krummel, P.B.; O’Doherty, S.; Weiss, R.F.; Prinn, R.G.; et al. Historical trend of ozone-depleting substances and hydrofluorocarbon concentrations during 2004–2020 derived from satellite observations and estimates for global emissions. Environ. Pollut. 2023, 316, 120570. [Google Scholar] [CrossRef]
- Steffen, J.; Bernath, P.F.; Boone, C.D. Trends in halogen-containing molecules measured by the Atmospheric Chemistry Experiment (ACE) satellite. J. Quant. Spectrosc. Radiat. Transf. 2019, 238, 106619. [Google Scholar] [CrossRef]
- Zhou, M.Q.; Vigouroux, C.; Langerock, B.; Wang, P.; Dutton, G.; Hermans, C.; Kumps, N.; Metzger, J.M.; Toon, G.; De Maziere, M. CFC-11, CFC-12 and HCFC-22 ground-based remote sensing FTIR measurements at Reunion Island and comparisons with MIPAS/ENVISAT data. Atmos. Meas. Tech. 2016, 9, 5621–5636. [Google Scholar] [CrossRef]
- Prignon, M.; Chabrillat, S.; Minganti, D.; O’Doherty, S.; Seryais, C.; Stiller, G.; Toon, G.C.; Vollmer, M.K.; Mahieu, E. Improved FTIR retrieval strategy for HCFC-22 (CHClF2), comparisons with in situ and satellite datasets with the support of models, and determination of its long-term trend above Jungfraujoch. Atmos. Chem. Phys. 2019, 19, 12309–12324. [Google Scholar] [CrossRef]
- Polyakov, A.; Poberovsky, A.; Makarova, M.; Virolainen, Y.; Timofeyev, Y.; Nikulina, A. Measurements of CFC-11, CFC-12, and HCFC-22 total columns in the atmosphere at the St. Petersburg site in 2009–2019. Atmos. Meas. Tech. 2021, 14, 5349–5368. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Available online: https://www.ndrc.gov.cn/xxgk/jd/wsdwhfz/202008/t20200803_1235430.html (accessed on 20 September 2023).
- National Development and Reform Commission. List of Relevant Third-Party Verification Agencies and HCFC-22 Manufacturers. 2018. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/201803/W020190905503776929718.pdf (accessed on 1 March 2023).
- Bruker FT-IR Spectrometer IFS 125HR. Available online: https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-research-spectrometers/ifs-125hr-high-resolution-ft-ir-spectrometer.html (accessed on 24 November 2023).
- Coastal Environmental System ZENO-3200. Available online: https://s.campbellsci.com/documents/us/manuals/zeno-3200-manual.pdf (accessed on 24 November 2023).
- Wang, W.; Tian, Y.; Liu, C.; Sun, Y.; Liu, W.; Xie, P.; Liu, J.; Xu, J.; Morino, I.; Velazco, V.A.; et al. Investigating the performance of a greenhouse gas observatory in Hefei, China. Atmos. Meas. Tech. 2017, 10, 2627–2643. [Google Scholar] [CrossRef]
- Shan, C.; Zhang, H.; Wang, W.; Liu, C.; Xie, Y.; Hu, Q.; Jones, N. Retrieval of Stratospheric HNO3 and HCl Based on Ground-Based High-Resolution Fourier Transform Spectroscopy. Remote Sens. 2021, 13, 2159. [Google Scholar] [CrossRef]
- Wu, P.; Shan, C.; Liu, C.; Xie, Y.; Wang, W.; Zhu, Q.; Zeng, X.; Liang, B. Ground-Based Remote Sensing of Atmospheric Water Vapor Using High-Resolution FTIR Spectrometry. Remote Sens. 2023, 15, 3484. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Y.; Song, Z.; Liu, C.; Wang, W.; Shan, C.; Zha, L. Remote Sensing of Atmospheric Hydrogen Fluoride (HF) over Hefei, China with Ground-Based High-Resolution Fourier Transform Infrared (FTIR) Spectrometry. Remote Sens. 2021, 13, 791. [Google Scholar] [CrossRef]
- NASA Jet Propulsion Laboratory. Available online: http://mark4sun.jpl.nasa.gov/pseudo.html (accessed on 5 March 2023).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- IRWG-NDACC: WACCM V.6 Profiles Dataset for IRWG Sites, NDACC Infrared Working Group [Data Set]. Available online: ftp://nitrogen.acom.ucar.edu/user/jamesw/IRWG/2013/WACCM/V6 (accessed on 10 June 2023).
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice, Oceanic and Planetary Physics; World Scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Tikhonov, A.N. On the Solution of Incorrectly Stated Problems and a Method of Regularization. In Doklady Akademii Nauk; SSSR: Moscow, Russia, 1963. [Google Scholar]
- Sussmann, R.; Forster, F.; Rettinger, M.; Jones, N. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network. Atmos. Meas. Tech. 2011, 4, 1943–1964. [Google Scholar] [CrossRef]
- Rodgers, C.D.; Connor, B.J. Intercomparison of remote sounding instruments. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Bernath, P. Atmospheric Chemistry Experiment (ACE): An overview. In Proceedings of the Conference on Earth Observing Systems VII, Seattle, WA, USA, 7–10 July 2002; pp. 39–49. [Google Scholar]
- De Maziere, M.; Vigouroux, C.; Bernath, P.F.; Baron, P.; Blumenstock, T.; Boone, C.; Brogniez, C.; Catoire, V.; Coffey, M.; Duchatelet, P.; et al. Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere. Atmos. Chem. Phys. 2008, 8, 2421–2435. [Google Scholar] [CrossRef]
- Zhou, M.; Langerock, B.; Vigouroux, C.; Wang, P.; Hermans, C.; Stiller, G.; Walker, K.A.; Dutton, G.; Mahieu, E.; De Maziere, M. Ground-based FTIR retrievals of SF6 on Reunion Island. Atmos. Meas. Tech. 2018, 11, 651–662. [Google Scholar] [CrossRef]
- Seibert, P.; Frank, A. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys. 2004, 4, 51–63. [Google Scholar] [CrossRef]
- Pisso, I.; Sollum, E.; Grythe, H.; Kristiansen, N.I.; Cassiani, M.; Eckhardt, S.; Arnold, D.; Morton, D.; Thompson, R.L.; Zwaaftink, C.D.G.; et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 2019, 12, 4955–4997. [Google Scholar] [CrossRef]
- Stohl, A.; Hittenberger, M.; Wotawa, G. Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmos. Environ. 1998, 32, 4245–4264. [Google Scholar] [CrossRef]
- Henne, S.; Brunner, D.; Oney, B.; Leuenberger, M.; Eugster, W.; Bamberger, I.; Meinhardt, F.; Steinbacher, M.; Emmenegger, L. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling. Atmos. Chem. Phys. 2016, 16, 3683–3710. [Google Scholar] [CrossRef]
- Stohl, A.; Seibert, P.; Arduini, J.; Eckhardt, S.; Fraser, P.; Greally, B.R.; Lunder, C.; Maione, M.; Muehle, J.; O’Doherty, S.; et al. An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons. Atmos. Chem. Phys. 2009, 9, 1597–1620. [Google Scholar] [CrossRef]
- Fang, X.K.; Ravishankara, A.R.; Velders, G.J.M.; Molina, M.J.; Su, S.S.; Zhang, J.B.; Hu, J.X.; Prinn, R.G. Changes in Emissions of Ozone-Depleting Substances from China Due to Implementation of the Montreal Protocol. Environ. Sci. Technol. 2018, 52, 11359–11366. [Google Scholar] [CrossRef]
- Gridded Population of the World (GPW) Version 4. Available online: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed on 1 June 2023).
- Zhou, M.Q.; Langerock, B.; Vigouroux, C.; Sha, M.K.; Ramonet, M.; Delmotte, M.; Mahieu, E.; Bader, W.; Hermans, C.; Kumps, N.; et al. Atmospheric CO and CH4 time series and seasonal variations on Reunion Island from ground-based in situ and FTIR (NDACC and TCCON) measurements. Atmos. Chem. Phys. 2018, 18, 13881–13901. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Available online: https://www.mee.gov.cn/ywdt/zbft/202306/t20230615_1033878.shtml (accessed on 20 June 2023).
- Yi, L.; Wu, J.; An, M.; Xu, W.; Fang, X.; Yao, B.; Li, Y.; Gao, D.; Zhao, X.; Hu, J. The atmospheric concentrations and emissions of major halocarbons in China during 2009–2019 *. Environ. Pollut. 2021, 284. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, A.; Virolainen, Y.; Poberovskiy, A.; Makarova, M.; Timofeyev, Y. Atmospheric HCFC-22 total columns near St. Petersburg: Stabilization with start of a decrease. Int. J. Remote Sens. 2020, 41, 4365–4371. [Google Scholar] [CrossRef]
- Xiang, B.; Patra, P.K.; Montzka, S.A.; Miller, S.M.; Elkins, J.W.; Moore, F.L.; Atlas, E.L.; Miller, B.R.; Weiss, R.F.; Prinn, R.G.; et al. Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions. Proc. Natl. Acad. Sci. USA 2014, 111, 17379–17384. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, M.; Stiller, G.P.; Laeng, A.; Kellmann, S.; von Clarmann, T.; Boone, C.D.; Elkins, J.W.; Engel, A.; Glatthor, N.; Grabowski, U.; et al. Global HCFC-22 measurements with MIPAS: Retrieval, validation, global distribution and its evolution over 2005–2012. Atmos. Chem. Phys. 2016, 16, 3345–3368. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, W.; Liu, C.; Shan, C.; Xie, Y.; Wu, P.; Zhu, Q.; Zhou, M.; De Maziere, M.; Mahieu, E.; et al. Retrieval of atmospheric CFC-11 and CFC-12 from high-resolution FTIRobservations at Hefei and comparisons with other independent datasets. Atmos. Meas. Tech. 2022, 15, 6739–6754. [Google Scholar] [CrossRef]
- Li, Z.F.; Bie, P.J.; Wang, Z.Y.; Zhang, Z.Y.; Jiang, H.Y.; Xu, W.G.; Zhang, J.B.; Hu, J.X. Estimated HCFC-22 emissions for 1990–2050 in China and the increasing contribution to global emissions. Atmos. Environ. 2016, 132, 77–84. [Google Scholar] [CrossRef]
Species | HCFC-22 |
---|---|
microwindow | 828.75–829.4 |
Interfering species | H2O, CO2, O3 |
Spectroscopy | PLL, HITRAN 2012 |
T, P and H2O profiles | NCEP |
A priori profile | WACCAM v6 |
Parameter | Uncertainty/% | Systematic Error/% | Random Error/% |
---|---|---|---|
Smoothing | - | 0.84 | - |
Measurement | - | - | 2.49 |
Retrieval | - | 0.04 | - |
Interfering species | - | 0.55 | - |
Temperature | - | 0.11 | 0.68 |
SZA | 0.1/0.2 | 0.07 | 0.14 |
Line intensity | 5 | 1.26 | - |
Line T broadening | 5 | 2.00 | - |
Line P broadening | 5 | 0.86 | - |
H2O spectroscopy | 10 | 2.57 | - |
ILS | 2 | 0.05 | 0.05 |
zshift | 1 | 0.39 | 0.39 |
Total | - | 3.8 | 2.6 |
Data | Period | Trend (% Year−1) |
---|---|---|
Hefei | 2017–2018 | 5.98 |
2018–2022 | −1.02 ± 0.01 | |
St. Petersburg [49] | 2013–2016 | 1.19 ± 0.81 |
2016–2019 | −0.66 ± 0.49 | |
Réunion Island [18] | 2004–2016 | 2.84 ± 0.06 |
Jungfraujoch [19] | 2012–2017 | 1.72 ± 0.31 |
ACE-FTS (30°S–30°N) [17] | 2012–2018 | 1.74 ± 0.08 |
Period | A Priori Emissions (China) (kt/Year) [44] | This Study (kt/Year) | Emissions by CO Interspecies Correlation (kt/Year) [6] | Emissions by HFC-134a Interspecies Correlation (kt/Year) [6] |
---|---|---|---|---|
2017 | 167.5 | 33.3 ± 16.8 | 29.8 ± 15.6 | 30.8 ± 10.5 |
2018 | 165.2 | 32.6 ± 16.3 | 31.6 ± 17.9 | |
2019 | 161.0 | 31.9 ± 16.0 | ||
2020 | 155.6 | 30.7 ± 15.4 | ||
2021 | 148.4 | 29.2 ± 14.6 | ||
2022 | 138.9 | 27.3 ± 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Wang, W.; Shan, C.; Xie, Y.; Zhu, Q.; Wu, P.; Liang, B.; Liu, C. Detection of Atmospheric Hydrofluorocarbon-22 with Ground-Based Remote High-Resolution Fourier Transform Spectroscopy over Hefei and an Estimation of Emissions in the Yangtze River Delta. Remote Sens. 2023, 15, 5590. https://doi.org/10.3390/rs15235590
Zeng X, Wang W, Shan C, Xie Y, Zhu Q, Wu P, Liang B, Liu C. Detection of Atmospheric Hydrofluorocarbon-22 with Ground-Based Remote High-Resolution Fourier Transform Spectroscopy over Hefei and an Estimation of Emissions in the Yangtze River Delta. Remote Sensing. 2023; 15(23):5590. https://doi.org/10.3390/rs15235590
Chicago/Turabian StyleZeng, Xiangyu, Wei Wang, Changgong Shan, Yu Xie, Qianqian Zhu, Peng Wu, Bin Liang, and Cheng Liu. 2023. "Detection of Atmospheric Hydrofluorocarbon-22 with Ground-Based Remote High-Resolution Fourier Transform Spectroscopy over Hefei and an Estimation of Emissions in the Yangtze River Delta" Remote Sensing 15, no. 23: 5590. https://doi.org/10.3390/rs15235590
APA StyleZeng, X., Wang, W., Shan, C., Xie, Y., Zhu, Q., Wu, P., Liang, B., & Liu, C. (2023). Detection of Atmospheric Hydrofluorocarbon-22 with Ground-Based Remote High-Resolution Fourier Transform Spectroscopy over Hefei and an Estimation of Emissions in the Yangtze River Delta. Remote Sensing, 15(23), 5590. https://doi.org/10.3390/rs15235590