Assessment of the Impact of Surface Water Content for Temperate Forests in SAR Data at C-Band
Abstract
:1. Introduction
- HH: horizontal transmit, horizontal receive.
- HV: horizontal transmit, vertical receive.
- VV: vertical transmit, vertical receive.
- VH: vertical transmit, horizontal receive.
2. Methods
2.1. Forestry Data
2.2. SAR Data
2.3. Statistical Analysis
3. Results
3.1. Preliminary Analysis
3.2. Regression Analysis
3.3. Random Forest
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Xu, Y.; Yao, F.; Wang, P.; Guo, W.; Li, L.; Yang, L. Advances in Estimation Methods of Vegetation Water Content Based on Optical Remote Sensing Techniques. Sci. China Technol. Sci. 2010, 53, 1159–1167. [Google Scholar] [CrossRef]
- Chuvieco, E.; Deshayes, M.; Stach, N.; Cocero, D.; Riaño, D. Short-Term Fire Risk: Foliage Moisture Content Estimation from Satellite Data. In Remote Sensing of Large Wildfires: In the European Mediterranean Basin; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 17–38. ISBN 978-3-642-60164-4. [Google Scholar]
- Danson, F.M.; Steven, M.D.; Malthus, T.J.; Clark, J.A. High-Spectral Resolution Data for Determining Leaf Water Content. Int. J. Remote Sens. 1992, 13, 461–470. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Dawson, T.P.; Curran, P.J.; North, P.R.J.; Plummer, S.E. The Propagation of Foliar Biochemical Absorption Features in Forest Canopy Reflectance: A Theoretical Analysis. Remote Sens. Environ. 1999, 67, 147–159. [Google Scholar] [CrossRef]
- Jacquemoud, S. Inversion of the PROSPECT + SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study. Remote Sens. Environ. 1993, 44, 281–292. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.; Yang, W.; Wang, X.; Luo, X.; Ran, P.; Zhang, H. Forest Canopy Water Content Monitoring Using Radiative Transfer Models and Machine Learning. Forests 2023, 14, 1418. [Google Scholar] [CrossRef]
- Flores-Anderson, A.I.; Herndon, K.E.; Thapa, R.B.; Cherrington, E. The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; SERVIR Global Science Coordination Office, National Space Science and Technology Center: Huntsville, AL, USA, 2019. [Google Scholar]
- Chan, Y.K.; Koo, V.C. An introduction to synthetic aperture radar (SAR). Prog. Electromagn. Res. B 2008, 2, 27–60. [Google Scholar] [CrossRef]
- Podest, E. Basics of Synthetic Aperture Radar. In Applied Remote Sensing Training Programme (ARSET); National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2017. [Google Scholar]
- Tsokas, A.; Rysz, M.; Pardalos, P.M.; Dipple, K. SAR Data Applications in Earth Observation: An Overview. Expert Syst. Appl. 2022, 205, 117342. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Wheeler, J.; Louis, V.; Tansey, K.; Balzter, H. Quantifying Forest Biomass Carbon Stocks from Space. Curr. For. Rep. 2017, 3, 1–18. [Google Scholar] [CrossRef]
- Lucas, R.M.; Mitchell, A.L.; Armston, J. Measurement of Forest Above-Ground Biomass Using Active and Passive Remote Sensing at Large (Subnational to Global) Scales. Curr. For. Rep. 2015, 1, 162–177. [Google Scholar] [CrossRef]
- Bouvet, A.; Mermoz, S.; Ballère, M.; Koleck, T.; Le Toan, T. Use of the SAR Shadowing Effect for Deforestation Detection with Sentinel-1 Time Series. Remote Sens. 2018, 10, 1250. [Google Scholar] [CrossRef]
- Dostálová, A.; Milenković, M.; Hollaus, M.; Wagner, W. Influence of Forest Structure on the Sentinel-1 Backscatter Variation-Analysis with Full-Waveform LiDAR Data. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume 740, p. 202. [Google Scholar]
- Ferrazzoli, P.; Paloscia, S.; Pampaloni, P.; Schiavon, G.; Solimini, D.; Coppo, P. Sensitivity of Microwave Measurements to Vegetation Biomass and Soil Moisture Content: A Case Study. IEEE Trans. Geosci. Remote Sens. 1992, 30, 750–756. [Google Scholar] [CrossRef]
- Hamdan, O.; Aziz, H.K.; Rahman, K.A. Remotely Sensed L-Band Sar Data for Tropical Forest Biomass Estimation. J. Trop. For. Sci. 2011, 23, 318–327. [Google Scholar]
- Ruiz-Ramos, J.; Marino, A.; Boardman, C.; Suarez, J. Continuous Forest Monitoring Using Cumulative Sums of Sentinel-1 Timeseries. Remote Sens. 2020, 12, 3061. [Google Scholar] [CrossRef]
- Sarker, M.L.R.; Nichol, J.; Iz, H.B.; Ahmad, B.B.; Rahman, A.A. Forest Biomass Estimation Using Texture Measurements of High-Resolution Dual-Polarization C-Band SAR Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3371–3384. [Google Scholar] [CrossRef]
- Konings, A.G.; Rao, K.; Steele-Dunne, S.C. Macro to Micro: Microwave Remote Sensing of Plant Water Content for Physiology and Ecology. New Phytol. 2019, 223, 1166–1172. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.-S.; Held, A.; Milne, T.; Tapley, I. SAR and Optical Remote Sensing: Assessment of Complementarity and Interoperability in the Context of a Large-Scale Operational Forest Monitoring System. Remote Sens. Environ. 2015, 156, 335–348. [Google Scholar] [CrossRef]
- Rignot, E.; Way, J.B.; McDonald, K.; Viereck, L.; Williams, C.; Adams, P.; Payne, C.; Wood, W.; Shi, J. Monitoring of Environmental Conditions in Taiga Forests Using ERS-1 SAR. Remote Sens. Environ. 1994, 49, 145–154. [Google Scholar] [CrossRef]
- de Jong, J.; Klaassen, W.; Ballast, A. Rain Storage in Forests Detected with ERS Tandem Mission SAR. Remote Sens. Environ. 2000, 72, 170–180. [Google Scholar] [CrossRef]
- Vaca, C.C.; Van Der Tol, C. Sensitivity of Sentinel-1 to Rain Stored in Temperate Forest. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Valencia, Spain, 2018; pp. 5330–5333. [Google Scholar]
- Doblas, J.; Carneiro, A.; Shimabukuro, Y.; Sant’Anna, S.; Aragão, L. Assessment of rainfall influence on sentinel-1 time series on amazonian tropical forests aiming deforestation detection improvement. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020. [Google Scholar] [CrossRef]
- Metlek, S.; Kayaalp, K.; Basyigit, I.B.; Genc, A.; Dogan, H. The Dielectric Properties Prediction of the Vegetation Depending on the Moisture Content Using the Deep Neural Network Model. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22496. [Google Scholar] [CrossRef]
- Chuah, H.T.; Kam, S.W.; Chye, Y.H. Microwave Dielectric Properties of Rubber and Oil Palm Leaf Samples: Measurement and Modelling. Int. J. Remote Sens. 1997, 18, 2623–2639. [Google Scholar] [CrossRef]
- Afzal, A.; Mousavi, S.-F. Estimation of Moisture in Maize Leaf by Measuring Leaf Dielectric Constant. Int. J. Agric. Biol. ISSN Print 2008, 10, 66–68. [Google Scholar]
- van Emmerik, T.; Steele-Dunne, S.; Judge, J.; van de Giesen, N. A Comparison between Leaf Dielectric Properties of Stressed and Unstressed Tomato Plants. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 275–278. [Google Scholar]
- Trabelsi, S.; Mckeown, M.S.; Nelson, S.O. Dielectric Properties-Based Method for Rapid and Nondestructive Moisture Sensing in Almonds. J. Microw. Power Electromagn. Energy 2016, 50, 94–105. [Google Scholar] [CrossRef]
- Kocakusak, A.; Colak, B.; Helhel, S. Frequency Dependent Complex Dielectric Permittivity of Rubber and Magnolia Leaves and Leaf Water Content Relation. J. Microw. Power Electromagn. Energy 2016, 50, 294–307. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the Temporal Behavior of Crops Using Sentinel-1 and Sentinel-2-like Data for Agricultural Applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by Random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Zhang, G.; Li, X.; Perrie, W.; Zhang, B.; Wang, L. Rain Effects on the Hurricane Observations over the Ocean by C-Band Synthetic Aperture Radar. J. Geophys. Res. Ocean. 2016, 121, 14–26. [Google Scholar] [CrossRef]
- Danklmayer, A.; Doring, B.J.; Schwerdt, M.; Chandra, M. Assessment of Atmospheric Propagation Effects in SAR Images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3507–3518. [Google Scholar] [CrossRef]
- De Ridder, K. Rainwater Storage on Plant Canopies. J. Geophys. Res. 2001, 106, 14819–14825. [Google Scholar] [CrossRef]
- de Jong, J.; Moors, E.; Klaassen, W.; Kuiper, P.; Saich, P.; Borgeaud, M. Estimations of Rainwater Storage in a Deciduous Forest Canopy by Satellite Radar. Available online: https://pure.rug.nl/ws/portalfiles/portal/3090751/c5.pdf (accessed on 25 September 2023).
- Huang, X.; Ziniti, B.; Torbick, N.; Ducey, M.J. Assessment of Forest above Ground Biomass Estimation Using Multi-Temporal C-Band Sentinel-1 and Polarimetric L-Band PALSAR-2 Data. Remote Sens. 2018, 10, 1424. [Google Scholar] [CrossRef]
- Wang, Y.; Hess, L.L.; Filoso, S.; Melack, J.M. Canopy Penetration Studies: Modeled Radar Backscatter from Amazon Floodplain Forests at C-, L-, and P-Band. In Proceedings of the IGARSS’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 2, pp. 1060–1062. [Google Scholar]
- Klaassen, W. Evaporation from Rain-Wetted Forest in Relation to Canopy Wetness, Canopy Cover, and Net Radiation. Water Resour. Res. 2001, 37, 3227–3236. [Google Scholar] [CrossRef]
- Rüetschi, M.; Schaepman, M.E.; Small, D. Using Multitemporal Sentinel-1 C-Band Backscatter to Monitor Phenology and Classify Deciduous and Coniferous Forests in Northern Switzerland. Remote Sens. 2018, 10, 55. [Google Scholar] [CrossRef]
- Udali, A.; Lingua, E.; Persson, H.J. Assessing Forest Type and Tree Species Classification Using Sentinel-1 C-Band SAR Data in Southern Sweden. Remote Sens. 2021, 13, 3237. [Google Scholar] [CrossRef]
Band | Frequency | Wavelength |
---|---|---|
Ka | 27–40 GHz | 0.8–1.1 cm |
K | 18–27 GHz | 1.1–1.7 cm |
Ku | 12–18 GHz | 1.7–2.4 cm |
X | 8–12 GHz | 2.4–3.8 cm |
C | 4–8 GHz | 3.8–7.5 cm |
S | 2–4 GHz | 7.5–15 cm |
L | 1–2 GHz | 15–30 cm |
P | 0.3–2 GHz | 30–100 cm |
Group N° | Dominant Species | Mean Top Canopy Height (m) | Gross Area (ha) |
---|---|---|---|
1 | Scots pine | 18.5 | 0.6 |
2 | Norway spruce | 27 | 5.5 |
3 | Sitka spruce | 23.5 | 9.2 |
4 | Sitka spruce | 33 | 11 |
5 | Japanese larch | 29 | 1.1 |
6 | Sitka spruce | 17.5 | 1.39 |
Backscatter (dB) | |||
---|---|---|---|
Q1 | µ | Q3 | |
VH | −16.8 | −15.92 | −14.8 |
VV | −10.8 | −10 | −8.98 |
VH | Coefficient | p-Value |
Intercept | −1.678 | <2−16 |
Rainfall | 4.16 × 10−5 | 0.946 |
Temperature | 0.003 | 0.001 |
Norway spruce | 0.738 | 1.36 × 10−8 |
Scots pine | −1.820 | 3.36 × 10−30 |
Sitka spruce | 0.153 | 1.164 |
Height | 0.030 | 0.0002 |
Model-Adjusted R2 | 0.379 | |
VV | Coefficient | p-Value |
Intercept | −1.199 | <2−16 |
Rainfall | 0.0002 | 0.63 |
Temperature | 0.002 | 0.009 |
Norway spruce | 1.405 | 3.10 × 10−39 |
Scots pine | −1.235 | 7.85 × 10−23 |
Sitka spruce | 0.778 | 3.12 × 10−18 |
Height | 0.05 | 5.76 × 10−18 |
Model-Adjusted R2 | 0.549 |
VH | Coefficient | p-Value |
Intercept | −17.049 | 0.00 |
VSW | 0.454 | 2.47 × 10−8 |
Temperature | 0.002 | 0.012 |
Norway spruce | 0.738 | 7.98 × 10−9 |
Scots pine | −1.820 | 4.52 × 10−31 |
Sitka spruce | 0.153 | 0.157 |
Height | 0.030 | 0.0002 |
Model p-value | 0.00 | |
VV | Coefficient | p-Value |
Intercept | −12.186 | 1.03 × 10−317 |
VSW | 0.345 | 9.88 × 10−8 |
Temperature | 0.001 | 0.063 |
Norway spruce | 1.405 | 2.99 × 10−40 |
Scots pine | −1.235 | 1.98 × 10−23 |
Sitka spruce | 0.778 | 1.04 × 10−18 |
Height | 0.057 | 1.96 × 10−18 |
Model p-value | 0.00 |
RF | Pearson’s Product–Moment Correlation | ||
---|---|---|---|
MSE | p-Value | Coeff | |
VH | 1.88 | <2 × 10−16 | 0.54 |
VV | 2.05 | 2.94 × 10−6 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cagnina, C.; Marino, A.; Silva-Perez, C.; Ruiz-Ramos, J.; Suarez, J. Assessment of the Impact of Surface Water Content for Temperate Forests in SAR Data at C-Band. Remote Sens. 2023, 15, 5723. https://doi.org/10.3390/rs15245723
Cagnina C, Marino A, Silva-Perez C, Ruiz-Ramos J, Suarez J. Assessment of the Impact of Surface Water Content for Temperate Forests in SAR Data at C-Band. Remote Sensing. 2023; 15(24):5723. https://doi.org/10.3390/rs15245723
Chicago/Turabian StyleCagnina, Costanza, Armando Marino, Cristian Silva-Perez, Javier Ruiz-Ramos, and Juan Suarez. 2023. "Assessment of the Impact of Surface Water Content for Temperate Forests in SAR Data at C-Band" Remote Sensing 15, no. 24: 5723. https://doi.org/10.3390/rs15245723
APA StyleCagnina, C., Marino, A., Silva-Perez, C., Ruiz-Ramos, J., & Suarez, J. (2023). Assessment of the Impact of Surface Water Content for Temperate Forests in SAR Data at C-Band. Remote Sensing, 15(24), 5723. https://doi.org/10.3390/rs15245723