An Overview of GIS-RS Applications for Archaeological and Cultural Heritage under the DBAR-Heritage Mission
Abstract
:1. Introduction
2. The DBAR Heritage Mission
3. Overview of GIS- and RS-Based Applications in ACH
3.1. Background of GIS and RS
3.2. Literature Overview of GIS-RS Applications for ACH
3.2.1. Bibliometric of GIS-RS Application in ACH
3.2.2. GIS-Led Applications in ACH
- GIS in archaeology
- GIS in CH
3.2.3. RS-Led Applications in ACH
- RS in archaeology
- RS in CH
4. GIS-RS Applications in ACH of BAR
4.1. Sites Identification
4.1.1. The Great Wall Linear Archaeological Site (GLASS) Identification
4.1.2. The Limes Linear Archaeological Site Identification
4.2. Preventive Conservation Support
4.2.1. The Floods Risk Assessment for Heritage
4.2.2. The InSAR Monitoring and Risk Assessment
4.3. Digital Routes Reconstruction
5. The Merits and Challenges in GIS-RS Application
5.1. Merits of GIS-RS Applications for ACH
5.1.1. High Efficiency for ACH Investigation
5.1.2. Quality Improvement for ACH Digital Source
5.1.3. Cognitive Enhancement for ACH Research
5.2. Challenges of GIS-RS in ACH Application
5.2.1. Heterogeneous Data Problem
5.2.2. Association and Correlation in ACH Data Mining
5.2.3. Interdisciplinary Dilemma
6. GIS-RS in ACH Applications: Trends and Perspectives
6.1. Towards Big Earth Data-Driven Understanding for ACH
6.2. Towards Refinement Monitoring and Assessment for ACH
6.3. Towards Artificial Intelligence Understanding for ACH
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miki, T. Study of the Silk Road: A History of Eastern and Western Ceramic Representations; Genesis Company: Tokyo, Japan, 1968. [Google Scholar]
- Christian, D. Silk Roads or Steppe Roads? The Silk Roads in World History. J. World Hist. 2000, 11, 1–26. [Google Scholar]
- Beckwith, C.I. Empires of the Silk Road: A History of Central Eurasia from the Bronze Age to the Present. In Empires of the Silk Road; Princeton University Press: Princeton, NJ, USA, 2009; ISBN 1400829941. [Google Scholar]
- Hill, D.J. Climate Change and the Rise of the Central Asian Silk Roads. In Socio-Environmental Dynamics along the Historical Silk Road; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 247–259. [Google Scholar]
- Chen, F.; Dong, G.; Chen, J.; Gao, Y.; Huang, W.; Wang, T.; Chen, S.; Hou, J. Climate Change and Silk Road Civilization Evolution in Arid Central Asia: Progress and Issues. Adv. Earth Sci. 2019, 34, 561. [Google Scholar]
- Chen, F.; An, C.; Dong, G.; Zhang, D. Human Activities, Environmental Changes, and Rise and Decline of Silk Road Civilization in Pan-Third Pole Region. Bull. Chin. Acad. Sci. (Chin. Version) 2017, 32, 967–975. [Google Scholar]
- Dong, G.; Lu, Y.; Liu, P.; Li, G. Spatio-Temporal Pattern of Human Activities and Their Influencing Factors along the Ancient Silk Road in Northwest China from 6000 a BP to 2000 a BP. Quat. Sci. 2022, 42, 1–16. [Google Scholar]
- Marzeion, B.; Levermann, A. Loss of Cultural World Heritage and Currently Inhabited Places to Sea-Level Rise. Environ. Res. Lett. 2014, 9, 034001. [Google Scholar] [CrossRef]
- White, G.G.; King, T.F. The Archaeological Survey Manual; Routledge: London, UK, 2016; ISBN 1315419114. [Google Scholar]
- Tartaron, T.F. The Archaeological Survey: Sampling Strategies and Field Methods. Hesperia Suppl. 2003, 32, 23–45. [Google Scholar] [CrossRef]
- Williams, T. The Silk Roads: An ICOMOS Thematic Study; ICOMOS: Pairs, France, 2014; ISBN 2918086126. [Google Scholar]
- Che, P.; Lan, J. Climate Change along the Silk Road and Its Influence on Scythian Cultural Expansion and Rise of the Mongol Empire. Sustainability 2021, 13, 2530. [Google Scholar] [CrossRef]
- Collins, B.D.; Bedford, D.R.; Corbett, S.C.; Cronkite-Ratcliff, C.; Fairley, H.C. Relations between Rainfall-Runoff-Induced Erosion and Aeolian Deposition at Archaeological Sites in a Semi-Arid Dam-Controlled River Corridor. Earth Surf. Process Landf. 2016, 41, 899–917. [Google Scholar] [CrossRef]
- Yu, L.; Peng, C.; Regmi, A.D.; Murray, V.; Pasuto, A.; Titti, G.; Shafique, M.; Priyadarshana, D.G.T. An International Program on Silk Road Disaster Risk Reduction—A Belt and Road Initiative (2016–2020). J. Mt. Sci. 2018, 15, 1383–1396. [Google Scholar] [CrossRef]
- Yu, X.; Yu, X.; Li, C.; Ji, Z. Information Diffusion-Based Risk Assessment of Natural Disasters along the Silk Road Economic Belt in China. J. Clean. Prod. 2020, 244, 118744. [Google Scholar]
- Li, Z.; Chen, Y.; Wang, Y.; Li, W. Drought Promoted the Disappearance of Civilizations along the Ancient Silk Road. Environ. Earth Sci. 2016, 75, 1116. [Google Scholar] [CrossRef]
- Su, X.; Sigley, G.G.; Song, C. Relational Authenticity and Reconstructed Heritage Space: A Balance of Heritage Preservation, Tourism, and Urban Renewal in Luoyang Silk Road Dingding Gate. Sustainability 2020, 12, 5830. [Google Scholar] [CrossRef]
- Xiao, D.; Lu, L.; Wang, X.; Nitivattananon, V.; Guo, H.; Hui, W. An Urbanization Monitoring Dataset for World Cultural Heritage in the Belt and Road Region. Big Earth Data 2022, 6, 127–140. [Google Scholar] [CrossRef]
- Rybina, L. The Impact of Ethnocentrism and Its Antecedents on Cultural Heritage Tourism along the Silk Road. Management 2021, 19, 364–371. [Google Scholar] [CrossRef]
- Yu, J.; Safarov, B.; Yi, L.; Buzrukova, M.; Janzakov, B. The Adaptive Evolution of Cultural Ecosystems along the Silk Road and Cultural Tourism Heritage: A Case Study of 22 Cultural Sites on the Chinese Section of the Silk Road World Heritage. Sustainability 2023, 15, 2465. [Google Scholar] [CrossRef]
- Available online: https://uclcaal.org/ (accessed on 12 December 2022).
- Available online: http://dsr.nii.ac.jp/index.html.en (accessed on 12 December 2022).
- Sperry, J. More than Meets the Eyes?: Archaeology Under Water, Technology, and Interpretation. Public Archaeol. 2009, 8, 20–34. [Google Scholar] [CrossRef]
- Luo, L.; Liu, J.; Cigna, F.; Evans, D.; Hernandez, M.; Tapete, D.; Shadie, P.; Agapiou, A.; Elfadaly, A.; Chen, M.; et al. Space Technology: A Powerful Tool for Safeguarding World Heritage. Innovation 2023, 4, 100420. [Google Scholar] [CrossRef]
- Huo, X.; Liu, Y.; Zhang, G.; Yang, H. A Research on Digital Technology’s Application in Preservation Planning of Wenming Historical and Cultural Block in Kunming. Int. Arch.Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 355–360. [Google Scholar] [CrossRef]
- Shevlyakova, M.I.; Atkina, L.I. Application of GIS-Technologies in Inventories of Cultural Heritage Objects by the Example of Kharitonov Garden, Yekaterinburg. In Proceedings of the IV Scientific-Technical Conference Forests of Russia: Policy, Industry, Science and Education, St. Petersburg, Russia, 22–24 May 2019; Volume 316. [Google Scholar]
- Zou, H.; Liu, Y.; Li, B.H.; Luo, W.J. Sustainable Development Efficiency of Cultural Landscape Heritage in Urban Fringe Based on GIS-DEA-MI, a Case Study of Wuhan, China. Int. J. Environ. Res. Public Health 2022, 19, 13061. [Google Scholar] [CrossRef]
- De Roo, B.; Ooms, K.; Bourgeois, J.; De Maeyer, P. Bridging Archaeology and GIS: Influencing Factors for a 4D Archaeological GIS. In Digital Heritage: Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Magnenat Thalmann, N., Fink, E., Zarnic, R., Yen, A.Y., Quak, E., Eds.; Springer: Cham, Switzherland, 2014; Volume 8740, pp. 186–195. ISBN 978-3-319-13695-0/978-3-319-13694-3. [Google Scholar]
- Nicu, I.C. Frequency Ratio and GIS-Based Evaluation of Landslide Susceptibility Applied to Cultural Heritage Assessment. J. Cult. Herit. 2017, 28, 172–176. [Google Scholar] [CrossRef]
- Malinverni, E.S.; Pierdicca, R.; Colosi, F.; Orazi, R. Dissemination in Archaeology: A GIS-Based StoryMap for Chan Chan. J. Cult. Herit. Manag. Sustain. Dev. 2019, 9, 500–519. [Google Scholar] [CrossRef]
- Ruzickova, K.; Ruzicka, J.; Bitta, J. A New GIS-Compatible Methodology for Visibility Analysis in Digital Surface Models of Earth Sites. Geosci. Front. 2021, 12, 13. [Google Scholar] [CrossRef]
- Campana, S.; Francovich, R. Landscape Archaeology in Tuscany: Cultural Resource Management, Remotely Sensed Techniques, GIS Based Data Integration and Interpretation. Bar. Int. Ser. 2003, 1151, 15–28. [Google Scholar]
- Wiseman, C. Uncovering Submerged Landscapes: Towards a GIS Method for Locating Submerged Archaeology in South-East Alaska. Int. J. Naut. Archaeol. 2019, 48, 522–523. [Google Scholar] [CrossRef]
- Dockrill, S.J. Interpreting Space—GIS And Archaeology—Allen, Kms, Green, Sw, Zubrow, Ebw. Antiquity 1992, 66, 266–268. [Google Scholar] [CrossRef]
- Constantinidis, D. GIS for Managing the Analysis and Protection of Archaeological Remains in the Willandra Lakes World Heritage Area. Archaeol. Ocean. 2009, 44, 112–118. [Google Scholar] [CrossRef]
- Arnold, J.B. Remote-Sensing in Underwater Archaeology. Int. J. Naut. Archaeol. 1981, 10, 51–62. [Google Scholar] [CrossRef]
- Risbol, O.; Langhammer, D.; Mauritsen, E.S.; Seitsonen, O. Employment, Utilization, and Development of Airborne Laser Scanning in Fenno-Scandinavian Archaeology-A Review. Remote Sens. 2020, 12, 1411. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G. What’s next in Remote Sensing Archaeology? Use of Field Spectroscopy to Design a New Space Sensor. In Proceedings of the Second International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 7–10 April 2014; Hadjimitsis, D.G., Themistocleous, K., Michaelides, S., Papadavid, G., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 9229, ISBN 978-1-62841-276-5. [Google Scholar]
- Thompson, V.D.; DePratter, C.B.; Lulewicz, J.; Lulewicz, I.H.; Thompson, A.D.R.; Cramb, J.; Ritchison, B.T.; Colvin, M.H. The Archaeology and Remote Sensing of Santa Elena’s Four Millennia of Occupation. Remote Sens. 2018, 10, 248. [Google Scholar] [CrossRef]
- Lambers, K. Airborne and Spaceborne Remote Sensing and Digital Image Analysis in Archaeology. In Digital Geoarchaeology: New Techniques for Interdisciplinary Human-Environmental Research; Springer: Cham, Switzherland, 2018; pp. 109–122. [Google Scholar]
- Jiang, A.H.; Chen, F.L.; Tang, P.P.; Liu, G.L.; Liu, W.K.; Wang, H.C.; Lu, X.; Zhao, X.L. Radar Remote Sensing for Archaeology in Hangu Frontier Pass in Xi’an, China. IOP Conf. Ser. Earth Environ. Sci. 2017, 57, 012031. [Google Scholar] [CrossRef]
- Comer, D.C.; Harrower, M.J.; Leisz, S.J. An Overview of the Application of Remote Sensing to Archaeology during the Twentieth Century. In Mapping Archaeological Landscapes from Space; Springer: New York, NY, USA, 2013; pp. 11–19. [Google Scholar]
- Bitelli, G.; Gatta, G.; Guccini, A.M.; Zaffagnini, A. GIS and Geomatics for Archive Documentation of an Architectural Project: The Case of the Big Arc of Entrance to the Vittorio Emanuele II Gallery of Milan, by Giuseppe Mengoni (1877). J. Cult. Herit. 2019, 38, 204–212. [Google Scholar] [CrossRef]
- De Meo, A.; Espa, G.; Espa, S.; Pifferi, A.; Ricci, U. A GIS for the Study of the Mid-Tiber Valley. Comparisons between Archaeological Settlements of the Sabine Tiberine Area. J. Cult. Herit. 2003, 4, 169–173. [Google Scholar] [CrossRef]
- Huang, S.M.; Hu, Q.W.; Wang, S.H.; Li, H.D. Ecological Risk Assessment of World Heritage Sites Using RS and GIS: A Case Study of Huangshan Mountain, China. Chin. Geogr. Sci. 2022, 32, 808–823. [Google Scholar] [CrossRef]
- Castleford, J. Archaeology, GIS, and the Time Dimension: An Overview. In Proceedings of the Computer Applications and Quantitative Methods in Archaeology; Lock, G.J.M., Ed.; 1991; pp. 95–106. [Google Scholar] [CrossRef]
- Neubauer, W. GIS in Archaeology—The Interface between Prospection and Excavation. Archaeol. Prospect. 2004, 11, 159–166. [Google Scholar] [CrossRef]
- Sanchez, M.L.; Del Pulgar, M.L.G.; Cabrera, A.T. Historic Construction of Diffuse Cultural Landscapes: Towards a GIS-Based Method for Mapping the Interlinkages of Heritage. Landsc. Res. 2021, 46, 916–931. [Google Scholar] [CrossRef]
- Nishanbaev, I.; Champion, E.; McMeekin, D.A. A Web GIS-Based Integration of 3D Digital Models with Linked Open Data for Cultural Heritage Exploration. ISPRS Int. J. Geoinf. 2021, 10, 684. [Google Scholar] [CrossRef]
- Simou, S.; Baba, K.; Nounah, A. A GIS-Based Methodology to Explore and Manage the Historical Heritage of Rabat City (Morocco). Acm J. Comput. Cult. Herit. 2022, 15, 14. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Alexakis, D.D.; Themistocleous, K.; Cuca, B.; Argyriou, A.; Sarris, A.; Hadjimitsis, D.G. Cultural Heritage Management and Monitoring Using Remote Sensing Data and GIS: The Case Study of Paphos Area, Cyprus. Comput. Environ. Urban. Syst. 2015, 54, 230–239. [Google Scholar] [CrossRef]
- Tzouvaras, M.; Kouhartsiouk, D.; Agapiou, A.; Danezis, C.; Hadjimitsis, D.G. The Use of Sentinel-1 Synthetic Aperture Radar (SAR) Images and Open-Source Software for Cultural Heritage: An Example from Paphos Area in Cyprus for Mapping Landscape Changes after a 5.6 Magnitude Earthquake. Remote Sens. 2019, 11, 1766. [Google Scholar] [CrossRef]
- Green, A.S.; Orengo, H.A.; Alam, A.; Garcia-Molsosa, A.; Green, L.M.; Conesa, F.; Ranjan, A.; Singh, R.N.; Petrie, C.A. Re-Discovering Ancient Landscapes: Archaeological Survey of Mound Features from Historical Maps in Northwest India and Implications for Investigating the Large-Scale Distribution of Cultural Heritage Sites in South Asia. Remote Sens. 2019, 11, 2089. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. UAS-Based Archaeological Remote Sensing: Review, Meta-Analysis and State-of-the-Art. Drones 2020, 4, 46. [Google Scholar] [CrossRef]
- Song, Y.Z.; Wu, P. Earth Observation for Sustainable Infrastructure: A Review. Remote Sens. 2021, 13, 1528. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Jia, X.; Fan, A. Earth Observation in Archaeology: A Brief Review. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103169. [Google Scholar] [CrossRef]
- KILIÇ, G. Remote Sensing Monitoring and Assessment of Silk Road in Turkey: Integrating Drone Systems with GPR and RM. Turk. J. Remote Sens. GIS 2022, 3, 126–138. [Google Scholar] [CrossRef]
- Fan, L.; Cao, M.; Li, X. Analysis of the Temporal and Spatial Distribution Characteristics and Influencing Factors of Religious Sites on the Maritime Silk Road: A Case Study of Quanzhou. J. Tour. Manag. Res. 2022, 9, 110–124. [Google Scholar] [CrossRef]
- Available online: https://www.researchsquare.com/article/rs-2584780/v1 (accessed on 12 December 2022). [CrossRef]
- Mirzahossein, H.; Sedghi, M.; Motevalli Habibi, H.; Jalali, F. Site Selection Methodology for Emergency Centers in Silk Road Based on Compatibility with Asian Highway Network Using the AHP and ArcGIS (Case Study: IR Iran). Innov. Infrastruct. Solut. 2020, 5, 113. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, F.; Guo, H. A Spatial Pattern Analysis of Frontier Passes in China’s Northern Silk Road Region Using a Scale Optimization BLR Archaeological Predictive Model. Heritage 2018, 1, 15–32. [Google Scholar] [CrossRef]
- Winter, T. Geocultural Power and the Digital Silk Roads. Environ. Plan. D 2022, 40, 923–940. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Cong, K.; Zhang, J.; Yang, Z. Temporal and Spatial Analysis of Deformation Monitoring of the Ming Great Wall in Shanxi Province through InSAR. Appl. Sci. 2023, 13, 12179. [Google Scholar] [CrossRef]
- Guo, H.; Qiu, Y.; Massimo, M.; Chen, F.; Zhang, L.; van Genderen, J.; Natarajan, I.; Hodson, S.; Uhlir, P.; Liu, J.; et al. DBAR: International Science Program for Sustainable Development of the Belt and Road Region Using Big Earth Data. Bull. Chin. Acad. Sci. 2017, 32, 8. [Google Scholar]
- Guo, H. Steps to the Digital Silk Road. Nature 2018, 554, 25–27. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, V.; Saroha, J. Geospatial Technology for Sustainable Development. Int. J. Health Sci. 2022, 6, 12282–12292. [Google Scholar] [CrossRef]
- Armstrong, M.P. Requirements for the Development of GIS-Based Group Decision-Support Systems. J. Am. Soc. Inf. Sci. 1994, 45, 669–677. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Z.; Jiang, H.; Wang, C.; Liu, J.; Liang, D. Big Earth Data: A New Challenge and Opportunity for Digital Earth’s Development. Int. J. Digit. Earth 2016, 10, 1–12. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, R.B.; Kaur, R. Spatial Information Technology: Definitions, Types and Linkages. In Spatial Information Technology for Sustainable Development Goals; Kumar, D., Singh, R.B., Kaur, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–14. ISBN 978-3-319-58039-5. [Google Scholar]
- Liu, J.G.; Mason, P.J. Image Processing and GIS for Remote Sensing: Techniques and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1118724208. [Google Scholar]
- Hognogi, G.G.; Pop, A.M.; Marian-Potra, A.C.; Somesfalean, T. The Role of UAS-GIS in Digital Era Governance. A Systematic Literature Review. Sustainability 2021, 13, 11097. [Google Scholar] [CrossRef]
- Opitz, R.S. An Overview of Airborne and Terrestrial Laser Scanning in Archaeology. In Interpreting Archaeological Topography: 3D Data, Visualisation and Observation; Oxbow Books: Oxford, UK, 2013; pp. 13–31. [Google Scholar]
- Church, T.; Brandon, R.J.; Burgett, G.R. GIS Applications in Archaeology: Method in Search of Theory. In Practical Applications of GIS for Archaeologists: A Predictive Modelling Toolkit; Taylor & Francis: Abingdon, UK, 1999; pp. 135–155. [Google Scholar]
- Yang, W.B.; Cheng, H.M.; Yen, Y.N. An Application of GIS on Integrative Management for Cultural Heritage—An Example for Digital Management on Taiwan Kinmen Cultural Heritage. In Digital Heritage: Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., MagnenatThalmann, N., Fink, E., Zarnic, R., Yen, A.Y., Quak, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8740, pp. 590–597. ISBN 978-3-319-13695-0/978-3-319-13694-3. [Google Scholar]
- Elfadaly, A.; Attia, W.; Qelichi, M.M.; Murgante, B.; Lasaponara, R. Management of Cultural Heritage Sites Using Remote Sensing Indices and Spatial Analysis Techniques. Surv. Geophys. 2018, 39, 1347–1377. [Google Scholar] [CrossRef]
- Rajangam, K.; Rajani, M.B. Applications of Geospatial Technology in the Management of Cultural Heritage Sites—Potentials and Challenges for the Indian Region. Curr. Sci. 2017, 113, 1948–1960. [Google Scholar] [CrossRef]
- Elfadaly, A.; Eldein, A.S.; Lasaponara, R. Cultural Heritage Management Using Remote Sensing Data and GIS Techniques around the Archaeological Area of Ancient Jeddah in Jeddah City, Saudi Arabia. Sustainability 2020, 12, 240. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.E.; Herrera, F. An Approach for Detecting, Quantifying, and Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory Field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Aria, M.; Misuraca, M.; Spano, M. Mapping the Evolution of Social Research and Data Science on 30 Years of Social Indicators Research. Soc. Indic. Res. 2020, 149, 803–831. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and Spaceborne Remote Sensing for Archaeological and Cultural Heritage Applications: A Review of the Century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Goodchild, M.F. Geographic Information Systems. Prog. Hum. Geogr. 1991, 15, 194–200. [Google Scholar] [CrossRef]
- Allen, K.M.; Green, S.W.; Zubrow, E.B.W. Interpreting Space: GIS and Archaeology; Taylor & Francis: Abingdon, UK, 1990. [Google Scholar]
- Menéndez-Marsh, F.; Al-Rawi, M.; Fonte, J.; Dias, R.; Gonçalves, L.J.; Seco, L.G.; Hipólito, J.; Machado, J.P.; Medina, J.; Moreira, J. Geographic Information Systems in Archaeology: A Systematic Review. J. Comput. Appl. Archaeol. 2023, 6, 40–50. [Google Scholar] [CrossRef]
- Berg, E. National Registries of Sites and Monuments in Norway—Developing GIS-Based Databases. In Computing Archaeology for Understanding the Past, Proceedings: Computer Applications and Quantitative Methods in Archaeology; Stancic, Z., Veljanovski, T., Eds.; Archaeopress: Oxford, UK, 2001; Volume S931, pp. 133–137. ISBN 1-84171-225-6. [Google Scholar]
- Bauer, A.; Nicoll, K.; Park, L.; Matney, T. Archaeological Site Distribution by Geomorphic Setting in the Southern Lower Cuyahoga River Valley, Northeastern Ohio: Initial Observations from a GIS Database. Geoarchaeol. Int. J. 2004, 19, 711–729. [Google Scholar] [CrossRef]
- Harris, T.M.; Lock, G. Toward an Evaluation of GIS in European Archaeology: The Past, Present and Future of Theory and Applications. In Archaeology and Geographic Information Systems A European Perspective; CRC Press: Boca Raton, FL, USA, 1995; pp. 349–365. [Google Scholar]
- Goings, C.A. A Predictive Model for Lithic Resources in Iowa. Plains Anthr. 2003, 48, 53–67. [Google Scholar] [CrossRef]
- Kohler, T.A.; Parker, S.C. Predictive Models for Archaeological Resource Location. In Advances in Archaeological Method and Theory; Elsevier: Amsterdam, The Netherlands, 1986; pp. 397–452. [Google Scholar]
- Middleton, R.; Winstanley, D. GIS in a Landscape Archaeology Context. Computing the Past. In CAA92: Computer Applications and Quantitative Methods in Archaeology; Aarhus University Press: Aarhus, Denmark, 1993; pp. 151–158. [Google Scholar]
- De Silva, M.; Pizzioli, G. GIS Analysis of Historical Cadastral Maps as a Contribution in Landscape Archaeology. 2004. Available online: http://hdl.handle.net/10900/62125 (accessed on 12 December 2022).
- Dani, A.H. Significance of Silk Road to Human Civilization: Its Cultural Dimension. Senri Ethnol. Stud. 1992, 32, 21–26. [Google Scholar]
- Lock, G. Spatial Technology and Archaeology: The Archaeological Applications of GIS. Int. J. Geogr. Inf. Sci. 2003, 17, 597–599. [Google Scholar]
- Apollonio, F.I.; Gaiani, M.; Benedetti, B. 3D Reality-Based Artefact Models for the Management of Archaeological Sites Using 3D Gis: A Framework Starting from the Case Study of the Pompeii Archaeological Area. J. Archaeol. Sci. 2012, 39, 1271–1287. [Google Scholar] [CrossRef]
- Orengo, H.A. Combining Terrestrial Stereophotogrammetry, DGPS and GIS-Based 3D Voxel Modelling in the Volumetric Recording of Archaeological Features. ISPRS J. Photogramm. Remote Sens. 2013, 76, 49–55. [Google Scholar] [CrossRef]
- McCool, J.P.P. PRAGIS: A Test Case for a Web-Based Archaeological GIS. J. Archaeol. Sci. 2014, 41, 133–139. [Google Scholar] [CrossRef]
- Wilkinson, G.G. A Review of Current Issues in the Integration of GIS and Remote Sensing Data. Int. J. Geogr. Inf. Syst. 1996, 10, 85–101. [Google Scholar] [CrossRef]
- Khoumeri, E.H.; Santucci, J.F. GIS in Archaeology; IEEE: Piscataway, NJ, USA, 2006; ISBN 978-1-4244-0231-1. [Google Scholar]
- Djindjian, F. GIS Usage in Worldwide Archaeology. Methodol. Trends Future Perspect. Appl. GIS Archaeol. 1998, 9, 19–30. [Google Scholar]
- Verhagen, P. Case Studies in Archaeological Predictive Modelling; Amsterdam University Press: Amsterdam, The Netherlands, 2007; Volume 14, ISBN 9087280076. [Google Scholar]
- Warren, R.E.; Asch, D.L. A Predictive Model of Archaeological Site Location in the Eastern Prairie Peninsula. In Practical Applications of GIS for Archaeologists: A Predictive Modelling Toolkit; CRC Press: Boca Raton, FL, USA, 2003; pp. 5–32. [Google Scholar]
- Alberti, G. Modeling Group Size and Scalar Stress by Logistic Regression from an Archaeological Perspective. PLoS ONE 2014, 9, e91510. [Google Scholar] [CrossRef] [PubMed]
- Wachtel, I.; Zidon, R.; Garti, S.; Shelach-Lavi, G. Predictive Modeling for Archaeological Site Locations: Comparing Logistic Regression and Maximal Entropy in North Israel and North-East China. J. Archaeol. Sci. 2018, 92, 28–36. [Google Scholar] [CrossRef]
- Vaughn, S.; Crawford, T. A Predictive Model of Archaeological Potential: An Example from Northwestern Belize. Appl. Geogr. 2009, 29, 542–555. [Google Scholar] [CrossRef]
- Carleton, W.C.; Conolly, J.; Ianonne, G. A Locally-Adaptive Model of Archaeological Potential (LAMAP). J. Archaeol. Sci. 2012, 39, 3371–3385. [Google Scholar] [CrossRef]
- Nicu, I.C.; Mihu-Pintilie, A.; Williamson, J. GIS-Based and Statistical Approaches in Archaeological Predictive Modelling (NE Romania). Sustainability 2019, 11, 5969. [Google Scholar] [CrossRef]
- Verhagen, P.; Whitley, T.G. Integrating Archaeological Theory and Predictive Modeling: A Live Report from the Scene. J. Archaeol. Method Theory 2012, 19, 49–100. [Google Scholar] [CrossRef]
- Muttaqin, L.A.; Murti, S.H.; Susilo, B. MaxEnt (Maximum Entropy) Model for Predicting Prehistoric Cave Sites in Karst Area of Gunung Sewu, Gunung Kidul, Yogyakarta. In Proceedings of the Sixth Geoinformation Science Symposium, Yogyakarta, Indonesia, 26–27 August 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11311, pp. 87–95. [Google Scholar]
- Wang, Y.; Shi, X.; Oguchi, T. Archaeological Predictive Modeling Using Machine Learning and Statistical Methods for Japan and China. ISPRS Int. J. Geoinf. 2023, 12, 238. [Google Scholar] [CrossRef]
- Resler, A.; Yeshurun, R.; Natalio, F.; Giryes, R. A Deep-Learning Model for Predictive Archaeology and Archaeological Community Detection. Humanit. Soc. Sci. Commun. 2021, 8, 295. [Google Scholar] [CrossRef]
- David, B.; Thomas, J. Handbook of Landscape Archaeology; Routledge: London, UK, 2016; ISBN 1315427729. [Google Scholar]
- Verhagen, P.; Nuninger, L.; Groenhuijzen, M.R. Modelling of Pathways and Movement Networks in Archaeology: An Overview of Current Approaches. In Finding the Limits of the Limes: Modelling Demography, Economy and Transport on the Edge of the Roman Empire; Springer: Cham, Switzerland, 2019; pp. 217–249. [Google Scholar]
- Mithen, S.; Reed, M. Stepping out: A Computer Simulation of Hominid Dispersal from Africa. J. Hum. Evol. 2002, 43, 433–462. [Google Scholar] [CrossRef] [PubMed]
- Bevan, A. Spatial Methods for Analysing Large-Scale Artefact Inventories. Antiquity 2012, 86, 492–506. [Google Scholar] [CrossRef]
- Bevan, A.; Conolly, J. GIS, Archaeological Survey, and Landscape Archaeology on the Island of Kythera, Greece. J. Field Archaeol. 2002, 29, 123–138. [Google Scholar] [CrossRef]
- Frachetti, M.D.; Smith, C.E.; Traub, C.M.; Williams, T. Nomadic Ecology Shaped the Highland Geography of Asia’s Silk Roads. Nature 2017, 543, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Donadio, E.; Spano, A. Data Collection and Management for Stratigraphic Analysis of Upstanding Structures. In Proceedings of the 2015 1st International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM), Barcelona, Spain, 28–30 April 2015; Grueau, C., Rocha, J.G., Eds.; IEEE: Piscatawat, NJ, USA, 2015. ISBN 978-989-758-142-7. [Google Scholar]
- Rua, H.; Alvito, P. Living the Past: 3D Models, Virtual Reality and Game Engines as Tools for Supporting Archaeology and the Reconstruction of Cultural Heritage—The Case-Study of the Roman Villa of Casal de Freiria. J. Archaeol. Sci. 2011, 38, 3296–3308. [Google Scholar] [CrossRef]
- Brughmans, T.; van Garderen, M.; Gillings, M. Introducing Visual Neighbourhood Configurations for Total Viewsheds. J. Archaeol. Sci. 2018, 96, 14–25. [Google Scholar] [CrossRef]
- Van Leusen, M. Viewshed and Cost Surface Analysis Using GIS (Cartographic Modelling in a Cell-Based GIS II). In Proceedings of the Computer Applications and Quantitative Methods in Archaeology; Archaeopress: Oxford, UK, 1999; pp. 215–223. [Google Scholar]
- Linck, R.; Fassbinder, J.W.E. Proving a Roman Technical Masterstroke: GIS-Based Viewshed and Intervisibility Analysis of the Bavarian Part of the Rhaetian Limes. Archaeol. Anthr. Sci. 2022, 14, 9. [Google Scholar] [CrossRef]
- Schuppert, C.; Dix, A. Reconstructing Former Features of the Cultural Landscape Near Early Celtic Princely Seats in Southern Germany A GIS-Based Application of Large-Scale Historical Maps and Archival Sources as a Contribution to Archaeological Research. Soc. Sci. Comput. Rev. 2009, 27, 420–436. [Google Scholar] [CrossRef]
- Goodchild, M.F. Scale in GIS: An Overview. Geomorphology 2011, 130, 5–9. [Google Scholar] [CrossRef]
- Lock, G.; Pouncett, J. Spatial Thinking in Archaeology: Is GIS the Answer? J. Archaeol. Sci. 2017, 84, 129–135. [Google Scholar] [CrossRef]
- Larrain, A.A.; McCall, M.K. Participatory Mapping and Participatory GIS for Historical and Archaeological Landscape Studies: A Critical Review. J. Archaeol. Method Theory 2019, 26, 643–678. [Google Scholar] [CrossRef]
- Wager, J. Developing a Strategy for the Angkor World Heritage Site. Tour Manag. 1995, 16, 515–523. [Google Scholar] [CrossRef]
- Stovel, H. Risk Preparedness: A Management Manual for World Cultural Heritage; ICCROM: Rome, Italy, 1998; ISBN 9290771526. [Google Scholar]
- Box, P. GIS and Cultural Resource Management: A Manual for Heritage Managers; UNESCO: Bangkok, Thailand, 1999. [Google Scholar]
- Myers, D.; Dalgity, A.; Avramides, I.; Wuthrich, D. Arches: An Open Source GIS for the Inventory and Management of Immovable Cultural Heritage. In Proceedings of the Progress in Cultural Heritage Preservation: 4th International Conference, EuroMed 2012, Limassol, Cyprus, 29 October–3 November 2012; Proceedings 4. Springer: Heidelberg, Germany, 2012; pp. 817–824. [Google Scholar]
- Matrone, F.; Colucci, E.; De Ruvo, V.; Lingua, A.; Spano, A. HBIM in a Semantic 3D GIS Database. In Proceedings of the 2nd International Conference of Geomatics and Restoration, Milan, Italy, 8–10 May 2019; Brumana, R., Pracchi, V., Rinaudo, F., Grimoldi, A., Scaioni, M., Previtali, M., Cantini, L., Eds.; Volume 42, pp. 857–865. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, F.L.; Fu, B.H.; Chen, W.K.; Qiao, Y.F.; Shi, P.L.; Zhou, W.; Lin, H.; Liao, Y.A.; Gao, S. Earthquake-Induced Risk Assessment of Cultural Heritage Based on InSAR and Seismic Intensity: A Case Study of Zhalang Temple Affected by the 2021 Mw 7.4 Maduo (China) Earthquake. Int. J. Disaster Risk Reduct. 2023, 84, 15. [Google Scholar] [CrossRef]
- Garrote, J.; Diez-Herrero, A.; Escudero, C.; Garcia, I. A Framework Proposal for Regional-Scale Flood-Risk Assessment of Cultural Heritage Sites and Application to the Castile and Leon Region (Central Spain). Water 2020, 12, 329. [Google Scholar] [CrossRef]
- Figueiredo, R.; Romao, X.; Pauperio, E. Flood Risk Assessment of Cultural Heritage at Large Spatial Scales: Framework and Application to Mainland Portugal. J. Cult. Herit. 2020, 43, 163–174. [Google Scholar] [CrossRef]
- Tarraguel, A.A.; Krol, B.; van Westen, C. Analysing the Possible Impact of Landslides and Avalanches on Cultural Heritage in Upper Svaneti, Georgia. J. Cult. Herit. 2012, 13, 453–461. [Google Scholar] [CrossRef]
- Karakhanian, A.; Jrbashyan, R.; Trifonov, V.; Philip, H.; Arakelian, S.; Avagyan, A.; Baghdasaryan, H.; Davtian, V.; Ghouskassyan, Y. Volcanic Hazards in the Region of the Armenian Nuclear Power Plant. J. Volcanol. Geotherm. Res. 2003, 126, 31–62. [Google Scholar] [CrossRef]
- Li, Y.Q.; Jia, X.; Liu, Z.; Zhao, L.; Sheng, P.F.; Storozum, M.J. The Potential Impact of Rising Sea Levels on China’s Coastal Cultural Heritage: A GIS Risk Assessment. Antiquity 2022, 96, 406–421. [Google Scholar] [CrossRef]
- Su, X.Y.; Song, C.Q.; Sigley, G. The Uses of Reconstructing Heritage in China: Tourism, Heritage Authorization, and Spatial Transformation of the Shaolin Temple. Sustainability 2019, 11, 411. [Google Scholar] [CrossRef]
- Accardo, G.; Giani, E.; Giovagnoli, A. The Risk Map of Italian Cultural Heritage. J. Archit. Conserv. 2003, 9, 41–57. [Google Scholar] [CrossRef]
- Campanaro, D.M.; Landeschi, G.; Dell’Unto, N.; Touati, A.M.L. 3D GIS for Cultural Heritage Restoration: A “white Box” Workflow. J. Cult. Herit. 2016, 18, 321–332. [Google Scholar] [CrossRef]
- Bastanlar, Y.; Grammalidis, N.; Zabulis, X.; Yilmaz, E.; Yardimci, Y.; Triantafyllidis, G. 3D Reconstruction for a Cultural Heritage Virtual Tour System. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37 Pt B5, 1023–1036. [Google Scholar]
- Petrescu, F. The Use of GIS Technology in Cultural Heritage. In Proceedings of the XXI International CIPA Symposium, Athens, Greece, 1–6 October 2007; pp. 1–6. [Google Scholar]
- Colucci, E.; De Ruvo, V.; Lingua, A.; Matrone, F.; Rizzo, G. HBIM-GIS Integration: From IFC to CityGML Standard for Damaged Cultural Heritage in a Multiscale 3D GIS. Appl. Sci. 2020, 10, 1356. [Google Scholar] [CrossRef]
- Goussios, D.; Faraslis, I. Integrated Remote Sensing and 3D GIS Methodology to Strengthen Public Participation and Identify Cultural Resources. Land 2022, 11, 1657. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H. Remote Sensing Archaeology: The next Century. Innovation 2022, 3, 100335. [Google Scholar] [CrossRef] [PubMed]
- Parcak, S.H. Satellite Remote Sensing for Archaeology; Routledge: London, UK, 2009; ISBN 1134060459. [Google Scholar]
- Wiseman, J.; El-Baz, F. Remote Sensing in Archaeology; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lasaponara, R.; Masini, N. Remote Sensing in Archaeology: An Overview. J. Aeronaut. Space Technol. 2013, 6, 7–17. [Google Scholar]
- Capper, J.E. XXIII.—Photographs of Stonehenge, as Seen from a War Balloon. Archaeologia 1907, 60, 571. [Google Scholar] [CrossRef]
- Crawford, O.G.S. Air Survey and Archaeology. Geogr. J. 1923, 61, 342–360. [Google Scholar] [CrossRef]
- Hammer, E.; FitzPatrick, M.; Ur, J. Succeeding CORONA: Declassified HEXAGON Intelligence Imagery for Archaeological and Historical Research. Antiquity 2022, 96, 679–695. [Google Scholar] [CrossRef]
- Goossens, R.; De Wulf, A.; Bourgeois, J.; Gheyle, W.; Willems, T. Satellite Imagery and Archaeology: The Example of CORONA in the Altai Mountains. J. Archaeol. Sci. 2006, 33, 745–755. [Google Scholar] [CrossRef]
- Challis, K. Archaeology’s Cold War Windfall—The CORONA Programme and Lost Landscapes of the Near East. JBIS—J. Br. Interplanet. Soc. 2007, 60, 21–27. [Google Scholar]
- De Laet, V.; Paulissen, E.; Waelkens, M. Methods for the Extraction of Archaeological Features from Very High-Resoluition Ikonos-2 Remote Sensing Imagery, Hisar (Southwest Turkey). J. Archaeol. Sci. 2007, 34, 830–841. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. QuickBird-Based Analysis for the Spatial Characterization of Archaeological Sites: Case Study of the Monte Serico Medieval Village. Geophys. Res. Lett. 2005, 32, 4. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.Y.; Liu, J.; Guo, H.D.; Zong, X.; Ji, W.; Cao, H. VHR GeoEye-1 Imagery Reveals an Ancient Water Landscape at the Longcheng Site, Northern Chaohu Lake Basin (China). Int. J. Digit. Earth 2017, 10, 139–154. [Google Scholar] [CrossRef]
- Lin, A.Y.M.; Novo, A.; Har-Noy, S.; Ricklin, N.D.; Stamatiou, K. Combining GeoEye-1 Satellite Remote Sensing, UAV Aerial Imaging, and Geophysical Surveys in Anomaly Detection Applied to Archaeology. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2011, 4, 870–876. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Hadjimitsis, D.G. Spectral Sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT Satellite Imagery Intended for the Detection of Archaeological Crop Marks. Int. J. Digit. Earth 2014, 7, 351–372. [Google Scholar] [CrossRef]
- El-Behaedi, R. Detection and 3D Modeling of Potential Buried Archaeological Structures Using WorldView-3 Satellite Imagery. Remote Sens. 2022, 14, 92. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.Y.; Lasaponara, R.; Xiang, B.; Zhen, J.; Zhu, L.W.; Yang, R.X.; Liu, D.C.; Liu, C.S. Auto-Extraction of Linear Archaeological Traces of Tuntian Irrigation Canals in Miran Site (China) from Gaofen-1 Satellite Imagery. Remote Sens. 2018, 10, 718. [Google Scholar] [CrossRef]
- Linck, R.; Busche, T.; Buckreuss, S. Visual Analysis of TerraSAR-X Backscatter Imagery for Archaeological Prospection. Photogramm. Fernerkund. Geoinf. 2014, 2014, 55–65. [Google Scholar] [CrossRef]
- Le, T.S.; Chang, C.P.; Nguyen, X.T.; Yhokha, A. TerraSAR-X Data for High-Precision Land Subsidence Monitoring: A Case Study in the Historical Centre of Hanoi, Vietnam. Remote Sens. 2016, 8, 338. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites. Remote Sens. 2019, 11, 1326. [Google Scholar] [CrossRef]
- Chen, F.L.; Masini, N.; Yang, R.X.; Milillo, P.; Feng, D.X.; Lasaponara, R. A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data. Remote Sens. 2015, 7, 24–50. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Detection, Morphometric Analysis and Digital Surveying of Archaeological Mounds in Southern Iraq with CartoSat-1 and COSMO-SkyMed DEMs. Land 2022, 11, 1406. [Google Scholar] [CrossRef]
- Stewart, C.; Lasaponara, R.; Schiavon, G. ALOS PALSAR Analysis of the Archaeological Site of Pelusium. Archaeol. Prospect. 2013, 20, 109–116. [Google Scholar] [CrossRef]
- Dore, N.; Patruno, J.; Pottier, E.; Crespi, M. New Research in Polarimetric SAR Technique for Archaeological Purposes Using ALOS PALSAR Data. Archaeol. Prospect. 2013, 20, 79–87. [Google Scholar] [CrossRef]
- Chen, F.L.; Lasaponara, R.; Masini, N. An Overview of Satellite Synthetic Aperture Radar Remote Sensing in Archaeology: From Site Detection to Monitoring. J. Cult. Herit. 2017, 23, 5–11. [Google Scholar] [CrossRef]
- Stewart, C. Detection of Archaeological Residues in Vegetated Areas Using Satellite Synthetic Aperture Radar. Remote Sens. 2017, 9, 118. [Google Scholar] [CrossRef]
- Chen, F.L.; Masini, N.; Liu, J.; You, J.B.; Lasaponara, R. Multi-Frequency Satellite Radar Imaging of Cultural Heritage: The Case Studies of the Yumen Frontier Pass and Niya Ruins in the Western Regions of the Silk Road Corridor. Int. J. Digit. Earth 2016, 9, 1224–1241. [Google Scholar] [CrossRef]
- Sarasan, A.; Ardelean, A.C.; Balarie, A.; Wehrheim, R.; Tabaldiev, K.; Akmatov, K. Mapping Burial Mounds Based on UAV-Derived Data in the Suusamyr Plateau, Kyrgyzstan. J. Archaeol. Sci. 2020, 123, 10. [Google Scholar] [CrossRef]
- Balsi, M.; Esposito, S.; Fallavollita, P.; Melis, M.G.; Milanese, M. Preliminary Archeological Site Survey by UAV-Borne Lidar: A Case Study. Remote Sens. 2021, 13, 332. [Google Scholar] [CrossRef]
- Aminzadeh, B.; Samani, F. Identifying the Boundaries of the Historical Site of Persepolis Using Remote Sensing. Remote Sens. Environ. 2006, 102, 52–62. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N.; Holmgren, R.; Forsberg, Y.B. Integration of Aerial and Satellite Remote Sensing for Archaeological Investigations: A Case Study of the Etruscan Site of San Giovenale. J. Geophys. Eng. 2012, 9, S26–S39. [Google Scholar] [CrossRef]
- Noviello, M.; Ciminale, M.; De Pasquale, V. Combined Application of Pansharpening and Enhancement Methods to Improve Archaeological Cropmark Visibility and Identification in QuickBird Imagery: Two Case Studies from Apulia, Southern Italy. J. Archaeol. Sci. 2013, 40, 3604–3613. [Google Scholar] [CrossRef]
- Figorito, B.; Tarantino, E. Semi-Automatic Detection of Linear Archaeological Traces from Orthorectified Aerial Images. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 458–463. [Google Scholar] [CrossRef]
- Davis, D.S.; Douglass, K. Aerial and Spaceborne Remote Sensing in African Archaeology: A Review of Current Research and Potential Future Avenues. Afr. Archaeol. Rev. 2020, 37, 9–24. [Google Scholar] [CrossRef]
- Trier, O.D.; Larsen, S.O.; Solberg, R. Automatic Detection of Circular Structures in High-Resolution Satellite Images of Agricultural Land. Archaeol. Prospect. 2009, 16, 1–15. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.Y.; Liu, C.S.; Guo, H.D.; Du, X.C. Integrated RS, GIS and GPS Approaches to Archaeological Prospecting in the Hexi Corridor, NW China: A Case Study of the Royal Road to Ancient Dunhuang. J. Archaeol. Sci. 2014, 50, 178–190. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. Living in the Golden Age of Digital Archaeology. In Computational Science and Its Applications—Iccsa 2016, Pt Ii; Gervasi, O., Murgante, B., Misra, S., Rocha, A., Torre, C.M., Tanier, D., Apduhan, B.O., Stankova, E., Wang, S., Eds.; Springer: Cham, Switzherland, 2016; Volume 9787, pp. 597–610. ISBN 978-3-319-42108-7. [Google Scholar]
- Luo, L.; Bachagha, N.; Yao, Y.; Liu, C.S.; Shi, P.L.; Zhu, L.W.; Shao, J.; Wang, X.Y. Identifying Linear Traces of the Han Dynasty Great Wall in Dunhuang Using Gaofen-1 Satellite Remote Sensing Imagery and the Hough Transform. Remote Sens. 2019, 11, 2711. [Google Scholar] [CrossRef]
- Cowley, D.C. In with the New, out with the Old? Auto-Extraction for Remote Sensing Archaeology. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2012; Bostater, C.R., Mertikas, S.P., Neyt, X., Nichol, C., Cowley, D.C., Bruyant, J.P., Eds.; SPIE: Bellingham, WA, USA, 2012; Volume 8532, ISBN 978-0-8194-9272-2. [Google Scholar]
- Soroush, M.; Mehrtash, A.; Khazraee, E.; Ur, J.A. Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq. Remote Sens. 2020, 12, 500. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, R.; Van de Voorde, T.; Chen, X.Z.; Bourgeois, J.; Gheyle, W.; Goossens, R.; Yang, J.; Xu, W.B. Automatic Detection of Burial Mounds (Kurgans) in the Altai Mountains. Isprs J. Photogramm. Remote Sens. 2021, 177, 217–237. [Google Scholar] [CrossRef]
- Yang, S.; Luo, L.; Li, Q.; Chen, Y.; Wu, L.; Wang, X. Auto-Identification of Linear Archaeological Traces of the Great Wall in Northwest China Using Improved DeepLabv3+ from Very High-Resolution Aerial Imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102995. [Google Scholar] [CrossRef]
- Tobiasz, A.; Markiewicz, J.; Lapinski, S.; Nikel, J.; Kot, P.; Muradov, M. Review of Methods for Documentation, Management, and Sustainability of Cultural Heritage. Case Study: Museum of King Jan III’s Palace at Wilanow. Sustainability 2019, 11, 7046. [Google Scholar] [CrossRef]
- Deroin, J.P.; Kheir, R.B.; Abdallah, C. Geoarchaeological Remote Sensing Survey for Cultural Heritage Management. Case Study from Byblos (Jbail, Lebanon). J. Cult. Herit. 2017, 23, 37–43. [Google Scholar] [CrossRef]
- Patania, I.; Porter, S.T.; Keegan, W.F.; Dihogo, R.; Frank, S.; Lewis, J.; Mashaka, H.; Ogutu, J.; Skosey-Lalonde, E.; Tryon, C.A.; et al. Geoarchaeology and Heritage Management: Identifying and Quantifying Multi-Scalar Erosional Processes at Kisese II Rockshelter, Tanzania. Front. Earth Sci. 2022, 9, 20. [Google Scholar] [CrossRef]
- Lasaponara, R.; Yang, R.X.; Chen, F.L.; Li, X.; Masini, N. Corona Satellite Pictures for Archaeological Studies: A Review and Application to the Lost Forbidden City of the Han-Wei Dynasties. Surv. Geophys. 2018, 39, 1303–1322. [Google Scholar] [CrossRef]
- Trant, P.L.K.; Kristiansen, S.M.; Sindbaek, S.M. Visible Near-Infrared Spectroscopy as an Aid for Archaeological Interpretation. Archaeol. Anthr. Sci. 2020, 12, 19. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Bovero, A.; Rinaudo, F. Image-Based Metric Heritage Modeling in the near-Infrared Spectrum. Herit. Sci. 2020, 8, 12. [Google Scholar] [CrossRef]
- Verhoeven, G.J. Near-Infrared Aerial Crop Mark Archaeology: From Its Historical Use to Current Digital Implementations. J. Archaeol. Method Theory 2012, 19, 132–160. [Google Scholar] [CrossRef]
- Tang, P.P.; Chen, F.L.; Zhu, X.K.; Zhou, W. Monitoring Cultural Heritage Sites with Advanced Multi-Temporal InSAR Technique: The Case Study of the Summer Palace. Remote Sens. 2016, 8, 432. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. InSAR Data for Geohazard Assessment in UNESCO World Heritage Sites: State of-the-Art and Perspectives in the Copernicus Era. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 24–32. [Google Scholar] [CrossRef]
- Tarchi, D.; Rudolf, H.; Pieraccini, M.; Atzeni, C. Remote Monitoring of Buildings Using a Ground-Based SAR: Application to Cultural Heritage Survey. Int. J. Remote Sens. 2010, 21, 3545–3551. [Google Scholar] [CrossRef]
- Morrison, K. Mapping Subsurface Archaeology with SAR. Archaeol. Prospect. 2013, 20, 149–160. [Google Scholar] [CrossRef]
- Themistocleous, K.; Nisantzi, A.; Hadjimitsis, D.; Retalis, A.; Paronis, D.; Michaelides, S.; Chrysoulakis, N.; Agapiou, A.; Giorgousis, G.; Perdikou, S. Monitoring Air Pollution in the Vicinity of Cultural Heritage Sites in Cyprus Using Remote Sensing Techniques. In Digital Heritage; Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6436, p. 536. ISBN 978-3-642-16872-7. [Google Scholar]
- Roots, O.O.; Roose, A.; Eerme, K. Remote Sensing of Climate Change, Long-Term Monitoring of Air Pollution and Stone Material Corrosion in Estonia. Int. J. Remote Sens. 2011, 32, 9691–9705. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Sun, Z. Effects of Urban Growth on Architectural Heritage: The Case of Buddhist Monasteries in the Qinghai-Tibet Plateau. Sustainability 2018, 10, 1593. [Google Scholar] [CrossRef]
- Lasaponara, R.; Murgante, B.; Elfadaly, A.; Qelichi, M.M.; Shahraki, S.Z.; Wafa, O.; Attia, W. Spatial Open Data for Monitoring Risks and Preserving Archaeological Areas and Landscape: Case Studies at Kom El Shoqafa, Egypt and Shush, Iran. Sustainability 2017, 9, 572. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Lysandrou, V.; Sarris, A.; Cuca, B.; Themistocleous, K.; Hadjimitsis, D.G. Impact of Urban Sprawl to Cultural Heritage Monuments: The Case Study of Paphos Area in Cyprus. J. Cult. Herit. 2015, 16, 671–680. [Google Scholar] [CrossRef]
- Bachagha, N.; Wang, X.; Luo, L.; Li, L.; Khatteli, H.; Lasaponara, R. Remote Sensing and GIS Techniques for Reconstructing the Military Fort System on the Roman Boundary (Tunisian Section) and Identifying Archaeological Sites. Remote Sens. Environ. 2020, 236, 111418. [Google Scholar] [CrossRef]
- Available online: https://www.iccrom.org/publication/guide-risk-management (accessed on 12 December 2022).
- Lucchi, E. Review of Preventive Conservation in Museum Buildings. J. Cult. Herit. 2018, 29, 180–193. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Chen, F.; Chen, F.; Zhang, L. Flood Hazard Mapping and Assessment on the Angkor World Heritage Site, Cambodia. Remote Sens. 2019, 11, 98. [Google Scholar] [CrossRef]
- Chen, F.L.; Guo, H.D.; Ma, P.F.; Lin, H.; Wang, C.; Ishwaran, N.; Hang, P. Radar Interferometry Offers New Insights into Threats to the Angkor Site. Sci. Adv. 2017, 3, 8. [Google Scholar] [CrossRef]
- Zhang, P. The Integration of GIS Technology and Novel Approaches in the Research of Silk Road Restoration in 2000. Trends Recent Res. Hist. China 2017, 2, 57–611. [Google Scholar]
- Bi, S.B.; He, X.Q.; Jiao, F.; Lu, G.N.; Pei, A.P. Spatial Data Mining on Cultural Stratums for Field Archaeology Based on Geography Information System Databases; IEEE: Piscataway, NJ, USA, 2009; ISBN 978-0-7695-3816-7. [Google Scholar]
- Jaiswal, G.; Sharma, A.; Yadav, S.K. Critical Insights into Modern Hyperspectral Image Applications through Deep Learning. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, 22. [Google Scholar] [CrossRef]
- Howey, M.C.L.; Burg, M.B. Assessing the State of Archaeological GIS Research: Unbinding Analyses of Past Landscapes. J. Archaeol. Sci. 2017, 84, 1–9. [Google Scholar] [CrossRef]
- Sudmanns, M.; Tiede, D.; Lang, S.; Bergstedt, H.; Trost, G.; Augustin, H.; Baraldi, A.; Blaschke, T. Big Earth Data: Disruptive Changes in Earth Observation Data Management and Analysis? Int. J. Digit. Earth 2019, 13, 832–850. [Google Scholar] [CrossRef] [PubMed]
- Conesa, F.C.; Orengo, H.A.; Lobo, A.; Petrie, C.A. An Algorithm to Detect Endangered Cultural Heritage by Agricultural Expansion in Drylands at a Global Scale. Remote Sens. 2023, 15, 53. [Google Scholar] [CrossRef]
- Yang, C.; Yu, M.; Li, Y.; Hu, F.; Jiang, Y.; Liu, Q.; Sha, D.; Xu, M.; Gu, J. Big Earth Data Analytics: A Survey. Big Earth Data 2019, 3, 83–107. [Google Scholar] [CrossRef]
- Gomes, V.C.F.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- Chen, F.; You, J.; Tang, P.; Zhou, W.; Masini, N.; Lasaponara, R. Unique Performance of Spaceborne SAR Remote Sensing in Cultural Heritage Applications: Overviews and Perspectives. Archaeol. Prospect. 2018, 25, 71–79. [Google Scholar] [CrossRef]
- Chen, F.; Guo, H.; Tapete, D.; Cigna, F.; Piro, S.; Lasaponara, R.; Masini, N. The Role of Imaging Radar in Cultural Heritage: From Technologies to Applications. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102907. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Detection of Archaeological Looting from Space: Methods, Achievements and Challenges. Remote Sens. 2019, 11, 2389. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. Big Earth Data for Cultural Heritage in the Copernicus Era. In Remote Sensing for Archaeology and Cultural Landscapes: Best Practices and Perspectives Across Europe and the Middle East; Hadjimitsis, D.G., Themistocleous, K., Cuca, B., Agapiou, A., Lysandrou, V., Lasaponara, R., Masini, N., Schreier, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 31–46. ISBN 978-3-030-10979-0. [Google Scholar]
- Chen, F.; Liu, H.; Xu, H.; Zhou, W.; Balz, T.; Chen, P.; Zhu, X.; Lin, H.; Fang, C.; Parcharidis, I. Deformation Monitoring and Thematic Mapping of the Badaling Great Wall Using Very High-Resolution Interferometric Synthetic Aperture Radar Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102630. [Google Scholar] [CrossRef]
- Bohak, C.; Slemenik, M.; Kordez, J.; Marolt, M. Aerial LiDAR Data Augmentation for Direct Point-Cloud Visualisation. Sensors 2020, 20, 2089. [Google Scholar] [CrossRef] [PubMed]
- Stular, B.; Eichert, S.; Lozic, E. Airborne LiDAR Point Cloud Processing for Archaeology. Pipeline and QGIS Toolbox. Remote Sens. 2021, 13, 3225. [Google Scholar] [CrossRef]
- Orengo, H.A.; Conesa, F.C.; Garcia-Molsosa, A.; Lobo, A.; Green, A.S.; Madella, M.; Petrie, C.A. Automated Detection of Archaeological Mounds Using Machine-Learning Classification of Multisensor and Multitemporal Satellite Data. Proc. Natl. Acad. Sci. USA 2020, 117, 18240–18250. [Google Scholar] [CrossRef]
- Lambers, K.; Verschoof-van der Vaart, W.B.; Bourgeois, Q.P.J. Integrating Remote Sensing, Machine Learning, and Citizen Science in Dutch Archaeological Prospection. Remote Sens. 2019, 11, 794. [Google Scholar] [CrossRef]
- Ludwig, N.; Orsilli, J.; Bonizzoni, L.; Gargano, M. UV-IR Image Enhancement for Mapping Restorations Applied on an Egyptian Coffin of the XXI Dynasty. Archaeol. Anthr. Sci. 2019, 11, 6841–6850. [Google Scholar] [CrossRef]
- Ming, Y.; Me, R.C.; Chen, J.K.; Rahmat, R.W.O.K. A Systematic Review on Virtual Reality Technology for Ancient Ceramic Restoration. Appl. Sci. 2023, 13, 8991. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Wang, X.; Luo, L.; Wan, H.; Ren, H. An Overview of GIS-RS Applications for Archaeological and Cultural Heritage under the DBAR-Heritage Mission. Remote Sens. 2023, 15, 5766. https://doi.org/10.3390/rs15245766
Yao Y, Wang X, Luo L, Wan H, Ren H. An Overview of GIS-RS Applications for Archaeological and Cultural Heritage under the DBAR-Heritage Mission. Remote Sensing. 2023; 15(24):5766. https://doi.org/10.3390/rs15245766
Chicago/Turabian StyleYao, Ya, Xinyuan Wang, Lei Luo, Hong Wan, and Hongge Ren. 2023. "An Overview of GIS-RS Applications for Archaeological and Cultural Heritage under the DBAR-Heritage Mission" Remote Sensing 15, no. 24: 5766. https://doi.org/10.3390/rs15245766
APA StyleYao, Y., Wang, X., Luo, L., Wan, H., & Ren, H. (2023). An Overview of GIS-RS Applications for Archaeological and Cultural Heritage under the DBAR-Heritage Mission. Remote Sensing, 15(24), 5766. https://doi.org/10.3390/rs15245766