Changes in Land Use and Ecosystem Service Values of Dunhuang Oasis from 1990 to 2030
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Data Preparation
2.3. Data Preparation Processing
2.4. AHP-PLUS Model
2.4.1. PLUS Model
2.4.2. AHP Method
2.5. Scenarios
2.6. Ecosystem Service Value
2.7. Spatial Autocorrelation
3. Results
3.1. Land Use Change Characteristics of the Dunhuang Oasis
3.2. Dunhuang Oasis ESV Change Characteristics
3.3. Spatial Autocorrelation Analysis
3.3.1. Global Spatial Autocorrelation of ESV
3.3.2. Local Spatial Autocorrelation of ESV
4. Discussion
4.1. Impact of Human Activities on Land Use Change
4.2. Effect of Land Use Change on ESV
4.3. Land Use Change and ESV Changes in the Future
4.4. Limitations and Future Work of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Classifica -tion Data | Standard Data | Row Statistics | Users Accuracy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BL | LCG | MCG | HCG | SF | BF | WB | FL | BU | |||
BL | 363 | 42 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 410 | 0.89 |
LCG | 24 | 341 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 373 | 0.91 |
MCG | 2 | 7 | 54 | 1 | 0 | 0 | 0 | 3 | 0 | 68 | 0.79 |
HCG | 0 | 2 | 5 | 56 | 1 | 0 | 0 | 5 | 0 | 69 | 0.81 |
SF | 0 | 1 | 2 | 1 | 14 | 1 | 0 | 1 | 0 | 20 | 0.70 |
BF | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 1.00 |
WB | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 1.00 |
FL | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 41 | 0 | 45 | 0.91 |
BU | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 10 | 0.70 |
Column Statistics | 390 | 394 | 72 | 61 | 15 | 4 | 2 | 53 | 8 | ||
Produce accuracy | 0.93 | 0.87 | 0.75 | 0.92 | 0.93 | 0.75 | 1.00 | 0.77 | 0.88 | ||
Overall accuracy | 0.88 | Kappa coefficient 0.83 |
Classifica -tion Data | Standard Data | Row Statistics | Users Accuracy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BL | LCG | MCG | HCG | SF | BF | WB | FL | BU | |||
BL | 436 | 51 | 3 | 0 | 1 | 1 | 0 | 5 | 6 | 503 | 0.87 |
LCG | 18 | 201 | 6 | 0 | 0 | 2 | 0 | 0 | 0 | 227 | 0.89 |
MCG | 2 | 5 | 78 | 0 | 0 | 1 | 0 | 4 | 0 | 90 | 0.87 |
HCG | 0 | 0 | 2 | 7 | 0 | 0 | 0 | 1 | 0 | 10 | 0.70 |
SF | 0 | 2 | 0 | 0 | 12 | 1 | 0 | 0 | 0 | 15 | 0.80 |
BF | 0 | 0 | 2 | 0 | 2 | 21 | 0 | 0 | 0 | 25 | 0.84 |
WB | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 5 | 0.80 |
FL | 1 | 0 | 3 | 3 | 1 | 0 | 0 | 83 | 1 | 94 | 0.88 |
BU | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 26 | 31 | 0.84 |
Column Statistics | 461 | 261 | 94 | 10 | 16 | 26 | 4 | 93 | 33 | ||
Produce accuracy | 0.95 | 0.77 | 0.83 | 0.70 | 0.75 | 0.81 | 1 | 0.89 | 0.79 | ||
Overall accuracy | 0.87 | Kappa coefficient 0.81 |
Classifica -tion Data | Standard Data | Row Statistics | Users Accuracy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BL | LCG | MCG | HCG | SF | BF | WB | FL | BU | |||
BL | 413 | 21 | 5 | 0 | 2 | 1 | 0 | 2 | 1 | 445 | 0.93 |
LCG | 17 | 261 | 10 | 0 | 0 | 3 | 0 | 0 | 0 | 291 | 0.90 |
MCG | 3 | 7 | 86 | 1 | 0 | 1 | 0 | 3 | 0 | 101 | 0.85 |
HCG | 0 | 0 | 1 | 7 | 0 | 0 | 0 | 2 | 0 | 10 | 0.70 |
SF | 1 | 4 | 1 | 0 | 9 | 0 | 0 | 0 | 0 | 15 | 0.60 |
BF | 0 | 1 | 1 | 0 | 1 | 12 | 0 | 0 | 0 | 15 | 0.80 |
WB | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 3 | 0.67 |
FL | 3 | 1 | 1 | 2 | 0 | 0 | 0 | 80 | 1 | 88 | 0.91 |
BU | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 28 | 32 | 0.88 |
Column Statistics | 440 | 296 | 105 | 10 | 12 | 17 | 2 | 88 | 30 | ||
Produce accuracy | 0.94 | 0.88 | 0.82 | 0.70 | 0.75 | 0.71 | 1.00 | 0.91 | 0.93 | ||
Overall accuracy | 0.90 | Kappa coefficient 0.85 |
Intensity of Importance on an Absolute Scale | Explanation |
---|---|
1 | Indicates that two factors are of equal importance compared to each other |
3 | Indicates that the former is slightly more important than the latter when compared to the two factors |
5 | Indicates that the former is significantly more important than the latter when compared to the two factors |
7 | Indicates that the former is more strongly important than the latter when compared to the two factors |
9 | Indicates that the former is more extremely important than the latter when compared to the two factors |
2, 4, 6, 8 | Denotes the middle value of the above adjacent judgement |
Countdown | If the ratio of the importance of factor i to factor j is aij, then the ratio of the importance of factor j to factor i is aji=1/aij |
m | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |
RI | 0 | 0 | 0.57 | 0.9 | 1.12 | 1.32 | 1.41 | 1.45 | 1.49 |
2010 | BL | LCG | MCG | HCG | BF | SF | WB | FL | |
---|---|---|---|---|---|---|---|---|---|
1990 | |||||||||
BL | 307.37 | 107.07 | 1.20 | 0.24 | 0.01 | 0.02 | 0.51 | 0.03 | |
LCG | 172.41 | 2043.58 | 279.96 | 15.36 | 1.87 | 0.95 | 0.81 | 0.36 | |
MCG | 134.72 | 695.90 | 802.40 | 368.63 | 58.05 | 3.08 | 5.90 | 8.81 | |
HCG | 32.38 | 69.74 | 96.96 | 229.84 | 22.27 | 1.53 | 1.88 | 10.05 | |
BF | 1.96 | 15.06 | 8.18 | 7.51 | 244.64 | 0.01 | 0.03 | 1.72 | |
SF | 15.64 | 76.54 | 8.26 | 3.95 | 0 | 68.61 | 0.05 | 0.17 | |
WB | 29.20 | 8.25 | 2.81 | 3.73 | 2.41 | 0 | 16.33 | 1.01 | |
FL | 10.31 | 22.03 | 31.21 | 96.23 | 0.58 | 0.90 | 0.14 | 116.19 |
2020 | BL | LCG | MCG | HCG | BF | SF | WB | FL | |
---|---|---|---|---|---|---|---|---|---|
2010 | |||||||||
BL | 356.44 | 17.43 | 0.76 | 0.03 | 0.13 | 0.20 | 0.25 | 0.12 | |
LCG | 597.52 | 2011.87 | 255.06 | 3.10 | 24.15 | 18.39 | 0.78 | 7.39 | |
MCG | 212.51 | 461.36 | 1220.71 | 104.03 | 44.23 | 30.68 | 2.00 | 149.53 | |
HCG | 33.06 | 67.89 | 147.27 | 136.91 | 11.00 | 10.20 | 0.66 | 121.88 | |
BF | 10.22 | 38.94 | 26.88 | 2.31 | 187.44 | 0.16 | 0.11 | 7.96 | |
SF | 7.88 | 18.96 | 11.96 | 1.54 | 0.60 | 129.18 | 0.03 | 3.13 | |
WB | 134.38 | 4.78 | 9.40 | 3.12 | 0 | 0 | 12.75 | 0.35 | |
FL | 1.69 | 1.17 | 13.55 | 7.58 | 1.31 | 0.87 | 0.07 | 216.76 |
ND | BL | LCG | MCG | HCG | BF | SF | WB | FL | |
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
BL | 345.49 | 0 | 0 | 0 | 0.28 | 0.45 | 0 | 0 | |
LCG | 285.17 | 2920.06 | 0 | 0 | 0 | 0 | 0 | 0.22 | |
MCG | 17.75 | 0 | 2187.88 | 70.94 | 49.55 | 34.79 | 0 | 15.02 | |
HCG | 3.29 | 0 | 47.68 | 377.42 | 26.04 | 22.91 | 0 | 7.20 | |
BF | 61.47 | 0 | 1.37 | 0.23 | 218.35 | 0.00 | 0 | 0.05 | |
SF | 16.00 | 0 | 0.81 | 4.57 | 0.48 | 143.95 | 0 | 0.08 | |
WB | 9.23 | 0 | 0 | 0 | 0 | 0 | 165.22 | 0.02 | |
FL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 222.49 |
EC | BL | LCG | MCG | HCG | BF | SF | WB | FL | |
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
BL | 321.46 | 0.37 | 0.01 | 0 | 0 | 0 | 0 | 0 | |
LCG | 548.44 | 2899.75 | 50.51 | 0.64 | 0 | 0 | 0 | 0.20 | |
MCG | 177.28 | 30.48 | 2007.18 | 57.73 | 0 | 0 | 0 | 14.41 | |
HCG | 0.69 | 0.42 | 146.42 | 411.76 | 0 | 0 | 0 | 8.97 | |
BF | 21.53 | 0.61 | 6.06 | 0.50 | 276.53 | 0 | 0 | 0.05 | |
SF | 5.13 | 0.11 | 3.33 | 0.34 | 0 | 173.84 | 0 | 0.10 | |
WB | 75.05 | 0.54 | 2.16 | 0.68 | 0 | 0 | 165.22 | 0.07 | |
FL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 222.49 |
EP | BL | LCG | MCG | HCG | BF | SF | WB | FL | |
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
BL | 342.09 | 0 | 0.01 | 0 | 0.16 | 0 | 0 | 0 | |
LCG | 282.56 | 2920.06 | 0 | 0.19 | 0 | 0 | 0 | 0 | |
MCG | 96.39 | 0 | 2191 | 7.06 | 40.72 | 0 | 0.02 | 0 | |
HCG | 0 | 0 | 0 | 515.22 | 0 | 0 | 0 | 0 | |
BF | 27.09 | 0 | 11.82 | 0.07 | 242.77 | 0 | 0 | 0 | |
SF | 1.79 | 0 | 0.87 | 0.03 | 0.13 | 173.84 | 0 | 0 | |
WB | 0 | 0 | 0 | 0 | 0 | 0 | 165.10 | 0 | |
FL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 230.98 |
References
- Rey Benayas, J.M.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Braat, L.C.; de Groot, R. The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Wei, Y.H.D. Effect of land-use change and optimization on the ecosystem service values of Jiangsu province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Song, F.; Su, F.; Mi, C.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef]
- SMITH, E. Extinction—The causes and consequences of the disappearance of species -ehrlich, p, ehrlich, a. South Calif. Law Rev. 1982, 55, 769–783. [Google Scholar]
- EHRLICH, P.; MOONEU, H. Extinction, substitution, and ecosystem services. Bioscience 1983, 33, 248–254. [Google Scholar] [CrossRef] [Green Version]
- DEGROOT, R. Environmental functions as a unifying concept for ecology and economics. Environmentalist 1987, 7, 105–109. [Google Scholar] [CrossRef]
- KELLERT, S. Assessing wildlife and environmental values in cost-benefit-analysis. J. Environ. Manag. 1984, 18, 355–363. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital (reprinted from nature, vol 387, pg 253, 1997). Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, F.; Zhang, H.; Dong, X. Quantifying changes in multiple ecosystem services during 2000–2012 on the loess plateau, china, as a result of climate variability and ecological restoration. Ecol. Eng. 2016, 97, 258–271. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, J. Building ecological security patterns based on ecosystem services value reconstruction in an arid inland basin: A case study in ganzhou district, NW China. J. Clean. Prod. 2019, 241, 118337. [Google Scholar] [CrossRef]
- Xiao, R.; Lin, M.; Fei, X.; Li, Y.; Zhang, Z.; Meng, Q. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the shanghai-hangzhou bay metropolitan region. J. Clean. Prod. 2020, 253, 119803. [Google Scholar] [CrossRef]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial differentiation and driving mechanisms in ecosystem service value of arid region:a case study in the middle and lower reaches of shule river basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Cao, S.Y.; Xiao, Y. Supply, consumption and valuation of ecosystem services in China. Resour. Sci. 2008, 38, 1152–1161. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2009, 5, 911–919. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of china’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, M.; Xie, G.; Zhen, L. Evaluating the impacts of land use change on ecosystem service values under multiple scenarios in the hunshandake region of China. Sci. Total Environ. 2022, 850, 158067. [Google Scholar] [CrossRef]
- Shuangao, W.; Padmanaban, R.; Mbanze, A.A.; Silva, J.M.N.; Shamsudeen, M.; Cabral, P.; Campos, F.S. Using satellite image fusion to evaluate the impact of land use changes on ecosystem services and their economic values. Remote Sens. 2021, 13, 851. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Zeng, Y.; Chen, M.; Su, F.; Cui, Y. Changes in ecosystems and ecosystem services in the guangdong-hong kong-macao greater bay area since the reform and opening up in China. Remote Sens. 2021, 13, 1611. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment Ecosystems and Human, Well-Being; Island Press: Washington, DC, USA, 2005.
- Long, X.; Lin, H.; An, X.; Chen, S.; Qi, S.; Zhang, M. Evaluation and analysis of ecosystem service value based on land use/cover change in dongting lake wetland. Ecol. Indic. 2022, 136, 108619. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating remote sensing and a markov-flus model to simulate future land use changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Su, F. Impacts of urbanization on the ecosystem services in the guangdong-hong kong-macao greater bay area, China. Remote Sens. 2020, 12, 3269. [Google Scholar] [CrossRef]
- Dai, X.; Johnson, B.A.; Luo, P.; Yang, K.; Dong, L.; Wang, Q.; Liu, C.; Li, N.; Lu, H.; Ma, L.; et al. Estimation of urban ecosystem services value: A case study of chengdu, southwestern China. Remote Sens. 2021, 13, 207. [Google Scholar] [CrossRef]
- Maimaiti, B.; Chen, S.; Kasimu, A.; Mamat, A.; Aierken, N.; Chen, Q. Coupling and coordination relationships between urban expansion and ecosystem service value in kashgar city. Remote Sens. 2022, 14, 2557. [Google Scholar] [CrossRef]
- Shi, L.; Halik, U.; Mamat, Z.; Aishan, T.; Abliz, A.; Welp, M. Spatiotemporal investigation of the interactive coercing relationship between urbanization and ecosystem services in arid northwestern China. Land Degrad. Dev. 2021, 32, 4105–4120. [Google Scholar] [CrossRef]
- Maimaiti, B.; Chen, S.; Kasimu, A.; Simayi, Z.; Aierken, N. Urban spatial expansion and its impacts on ecosystem service value of typical oasis cities around tarim basin, northwest China. Int. J. Appl. Earth Obs. Geoinformation. 2021, 104, 102554. [Google Scholar] [CrossRef]
- UNCCD. Reaping the Rewards: Financing Land Degradation Neutrality; United Nations Convention to Combat Desertification: Bonn, Germany, 2015. [Google Scholar]
- Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover change in ebinur lake wetland national nature reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef]
- Tan, Z.; Guan, Q.; Lin, J.; Yang, L.; Luo, H.; Ma, Y.; Tian, J.; Wang, Q.; Wang, N. The response and simulation of ecosystem services value to land use/land cover in an oasis, northwest China. Ecol. Indic. 2020, 118, 106711. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—an earth observing satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Rao, Y.; Zhou, M.; Ou, G.; Dai, D.; Zhang, L.; Zhang, Z.; Nie, X.; Yang, C. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 2018, 186, 662–672. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, W.; Yan, N.; Wei, P.; Zhao, Y.; Zhao, H.; Zhu, L. Research on service value and adaptability zoning of grassland ecosystem in ethiopia. Remote Sens. 2022, 14, 2722. [Google Scholar] [CrossRef]
- Phan, T.; Kuch, V.; Lehnert, L. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Rummell, A.; Leon, J.; Borland, H.; Elliott, B.; Gilby, B.; Henderson, C.J.; Olds, A.D. Watching the Saltmarsh Grow: A High-Resolution Remote Sensing Approach to Quantify the Effects of Wetland Restoration. Remote Sens. 2022, 14, 4559. [Google Scholar] [CrossRef]
- Tang, W.; Hu, J.; Zhang, H.; Wu, P.; He, H. Kappa coefficient: A popular measure of rater agreement. Shanghai Arch Psychiatry 2015, 27, 62–67. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, M.; Chen, X.; Wang, Z.; Xiao, L.; Xu, K.; Zhang, S.; Wang, M.; Xu, Z.; Shi, Z. Identification and risk prediction of potentially contaminated sites in the yangtze river delta. Sci. Total Environ. 2022, 815, 151982. [Google Scholar] [CrossRef]
- Zhai, H.; Lv, C.; Liu, W.; Yang, C.; Fan, D.; Wang, Z.; Guan, Q. Understanding spatio-temporal patterns of land use/land cover change under urbanization in wuhan, China, 2000–2019. Remote Sens. 2021, 13, 3331. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. MathPsychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on ahp-psr method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection? A case of weifang city, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the sichuan-yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Q.; Wang, P.; Zhang, L.; Tian, Y.; Li, X. Spatio-temporal changes in ecosystem service value and its coordinated development with economy: A case study in hainan province, China. Remote Sens. 2022, 14, 970. [Google Scholar] [CrossRef]
- Ye, Y.; Bryan, B.A.; Zhang, J.; Connor, J.D.; Chen, L.; Qin, Z.; He, M. Changes in land-use and ecosystem services in the guangzhou-foshan metropolitan area, China from 1990 to 2010: Implications for sustainability under rapid urbanization. Ecol. Indic. 2018, 93, 930–941. [Google Scholar] [CrossRef]
- Unwin, D.; Unwin, A. Local indicators of spatial association-foreword. J. R. Stat. Soc. Ser. Stat. 1998, 47, 413. [Google Scholar] [CrossRef]
- Hu, H.B.; Liu, H.Y.; Hao, J.F.; An, J. Spatio-temporal variation in the value of ecosystem services and its response to land use intensity. Acta Ecol. Sin. 2013, 33, 2565–2576. [Google Scholar]
- Ye, H.; Chen, S.; Sheng, F.; Chen, H. Research on dynamic changes of land cover and its correlation with groundwater in the shule river basin. J. Hydraul. Eng. 2013, 44, 83–90. [Google Scholar] [CrossRef]
- Favretto, N.; Luedeling, E.; Stringer, L.C.; Dougill, A.J. Valuing ecosystem services in semi-arid rangelands through stochastic simulation. Land Degrad. Dev. 2017, 28, 65–73. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Qi, J.; Wang, Q. Evaluation of the stability and suitable scale of an oasis irrigation district in northwest China. Water 2020, 12, 2837. [Google Scholar] [CrossRef]
- Yang, G.; Li, F.; Chen, D.; He, X.; Xue, L.; Long, A. Assessment of changes in oasis scale and water management in the arid manas river basin, north western China. Sci. Total Environ. 2019, 691, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Water Resource Department of Gansu Province. Comprehensive planning of rational use of water resource and protection of ecosystem services in the dunhuang region; Gansu People’s Publishing House Press: Lanzhou, China, 2011. [Google Scholar]
- Zhang, X.; Zhang, L.; He, C.; Li, J.; Jiang, Y.; Ma, L. Quantifying the impacts of land use/land cover change on groundwater depletion in northwestern China—A case study of the dunhuang oasis. Agric. Water Manag. 2014, 146, 270–279. [Google Scholar] [CrossRef]
- Department of Geoscience, Chinese Academy of Sciences. Water Resource Survey Report in Arid Regions of Northwest China; Advances in Earth Science: Beijing, China, 1990; Volume 11. [Google Scholar]
- Bie, Q.; Xie, Y. The constraints and driving forces of oasis development in arid region: A case study of the hexi corridor in northwest China. Sci. Rep. 2020, 10, 17708. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, X.; Hua, K.; Wang, Y.; Wang, P.; Han, X.; Ye, J.; Wen, S. Effects of land use change on ecosystem services in arid area ecological migration. Chin. Geogr. Sci. 2018, 28, 894–906. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yu, J.; Wang, P.; Wang, T.; Li, Y. Groundwater-fed oasis in arid northwest China: Insights into hydrological and hydrochemical processes. J. Hydrol. 2021, 597, 126154. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, X.; Shi, M. Human driving forces of oasis expansion in northwestern China during the last decade-a case study of the heihe river basin. Land Degrad. Dev. 2017, 28, 412–420. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Chen, T.; Yao, X.; Chen, W. Do protected areas improve ecosystem services? a case study of hoh xil nature reserve in Qinghai-Tibetan Plateau. Remote Sens. 2020, 12, 471. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Xiao, M.; Huang, C.; Liang, Y.; Yang, Z. Land use scenario simulation and ecosystem service management for different regional development models of the beibu gulf area, China. Remote Sens. 2021, 13, 3161. [Google Scholar] [CrossRef]
Service Type | Ecosystem Service Value/(yuan·hm−2·a−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Categories | Sub-Categories | BL | LCG | MCG | HCG | SF | BF | WB | FL |
Provisioning services | Food production | 0.01 | 0.27 | 0.60 | 1.04 | 0.19 | 0.29 | 0.8 | 0.85 |
Raw material production | 0.03 | 0.40 | 0.88 | 1.53 | 0.43 | 0.66 | 0.23 | 0.4 | |
Water supply | 0.02 | 0.22 | 0.49 | 0.85 | 0.22 | 0.34 | 8.29 | 0.02 | |
Regulating services | Gas regulation | 0.11 | 1.42 | 3.09 | 5.38 | 1.41 | 2.17 | 0.77 | 0.67 |
Climate regulation | 0.1 | 3.74 | 8.17 | 14.24 | 4.23 | 6.5 | 2.29 | 0.36 | |
Purify environment | 0.31 | 1.24 | 2.70 | 4.70 | 1.28 | 1.93 | 5.55 | 0.1 | |
Hydrological regulation | 0.21 | 2.75 | 5.99 | 10.44 | 3.35 | 4.74 | 102.24 | 0.27 | |
Supporting services | Soil conservation | 0.13 | 1.72 | 3.76 | 6.56 | 1.72 | 2.65 | 0.93 | 1.03 |
Nutrient cycling | 0.01 | 0.13 | 0.28 | 0.49 | 0.13 | 0.2 | 0.07 | 0.12 | |
Biodiversity | 0.12 | 1.57 | 3.42 | 5.96 | 1.57 | 2.41 | 2.55 | 0.13 | |
Cultural services | Aesthetic landscape | 0.05 | 0.69 | 1.51 | 2.62 | 0.69 | 1.06 | 1.89 | 0.06 |
Area | 1990 | 2010 | 2020 | ND | EC | EP |
---|---|---|---|---|---|---|
BL | 145,891.98 | 182,675.16 | 164,711.88 | 151,849.62 | 141,154.65 | 150,111.00 |
LCG | 134,003.07 | 85,765.41 | 99,560.34 | 109,290.69 | 119,317.95 | 109,200.78 |
MCG | 28,074.15 | 32,470.65 | 34,835.40 | 37,107.81 | 35,720.28 | 36,471.78 |
HCG | 21,355.11 | 4170.06 | 4752.36 | 4344.21 | 5094.90 | 4619.34 |
BF | 6402.42 | 5869.53 | 5813.19 | 5916.78 | 6417.63 | 5922.63 |
SF | 2387.52 | 5512.32 | 5510.52 | 5258.43 | 5796.18 | 5600.07 |
WB | 449.82 | 244.80 | 634.59 | 670.14 | 936.09 | 634.14 |
FL | 15,507.54 | 33,508.80 | 29,472.39 | 26,767.98 | 26,767.98 | 27,789.39 |
BU | 2740.32 | 6595.20 | 11,521.26 | 15,606.27 | 15,606.27 | 16,462.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, F.; Yang, Q.; Wang, Z.; Li, Y.; Cheng, L.; Yao, B.; Lu, Q. Changes in Land Use and Ecosystem Service Values of Dunhuang Oasis from 1990 to 2030. Remote Sens. 2023, 15, 564. https://doi.org/10.3390/rs15030564
Yi F, Yang Q, Wang Z, Li Y, Cheng L, Yao B, Lu Q. Changes in Land Use and Ecosystem Service Values of Dunhuang Oasis from 1990 to 2030. Remote Sensing. 2023; 15(3):564. https://doi.org/10.3390/rs15030564
Chicago/Turabian StyleYi, Fan, Qiankun Yang, Zhongjing Wang, Yonghua Li, Leilei Cheng, Bin Yao, and Qi Lu. 2023. "Changes in Land Use and Ecosystem Service Values of Dunhuang Oasis from 1990 to 2030" Remote Sensing 15, no. 3: 564. https://doi.org/10.3390/rs15030564
APA StyleYi, F., Yang, Q., Wang, Z., Li, Y., Cheng, L., Yao, B., & Lu, Q. (2023). Changes in Land Use and Ecosystem Service Values of Dunhuang Oasis from 1990 to 2030. Remote Sensing, 15(3), 564. https://doi.org/10.3390/rs15030564