A Bi-Temporal-Feature-Difference- and Object-Based Method for Mapping Rice-Crayfish Fields in Sihong, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Satellite Imagery and preprocessing
2.2.2. Ground Reference Data
2.3. Framework of the Analysis
2.3.1. Segmentation Method
2.3.2. Feature Selection
2.3.3. RF Classification
2.3.4. Validation to Evaluate the BTFCOB Method
3. Results
3.1. Determination of the Optimal Segmentation Scale
3.2. Feature Selection of the BTFDOB Method
3.3. RCF Extraction and Accuracy Assessment of 2021
3.4. Comparison with the STOB Method Based on Three Years
4. Discussion
4.1. Advantages of the BTFDOB Method
4.2. Potential of the BTFDOB Method
4.3. Accuracy Improvements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, F.; Hua, L.; Zhai, L.; Zhang, F.; Fan, X.; Wang, S.; Liu, Y.; Liu, H. Rice-crayfish pattern in irrigation-drainage unit increased N runoff losses and facilitated N enrichment in ditches. Sci. Total Environ. 2022, 848, 157721. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Cao, C. Crayfish–rice integrated system of production: An agriculture success story in China. A review. Agron. Sustain. Dev. 2021, 41, 68. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, T.; Guo, H.L.; Duo, Z.; Gao, H.; Zhang, H.C. Conversion from rice-wheat rotation to rice-crayfish coculture increases net ecosystem service values in Hung-tse Lake area, east China. J. Clean. Prod. 2021, 319, 128883. [Google Scholar] [CrossRef]
- Xu, Q.; Peng, X.; Guo, H.L.; Che, Y.; Dou, Z.; Xing, Z.P.; Hou, J.; Styles, D.; Gao, H.; Zhang, H.C. Rice-crayfish coculture delivers more nutrition at a lower environmental cost. Sustain. Prod. Consum. 2022, 29, 14–24. [Google Scholar] [CrossRef]
- Hou, J.; Wang, X.L.; Xu, Q.; Cao, Y.X.; Zhang, D.Y.; Zhu, J.Q. Rice-crayfish systems are not a panacea for sustaining cleaner food production. Environ. Sci. Pollut. Res. 2021, 28, 22913–22926. [Google Scholar] [CrossRef]
- Mo, A.J.; Dang, Y.; Wang, J.H.; Liu, C.S.; Yang, H.J.; Zhai, Y.X.; Wang, Y.S.; Yuan, Y.C. Heavy metal residues, releases and food health risks between the two main crayfish culturing models: Rice-crayfish coculture system versus crayfish intensive culture system. Environ. Pollut. 2022, 305, 119216. [Google Scholar] [CrossRef]
- Yuan, J.; Liao, C.A.S.; Zhang, T.L.; Guo, C.A.B.; Liu, J.S. Advances in ecology research on integrated rice field aquaculture in China. Water 2022, 14, 2333. [Google Scholar] [CrossRef]
- Anastacio, P.M.; Parente, V.S.; Correia, A.M. Crayfish effects on seeds and seedlings: Identification and quantification of damage. Freshw. Biol. 2005, 50, 697–704. [Google Scholar] [CrossRef]
- Gedik, K.; Kongchum, M.; DeLaune, R.D.; Sonnier, J.J. Distribution of arsenic and other metals in crayfish tissues (Procambarus clarkii) under different production practices. Sci. Total Environ. 2017, 574, 322–331. [Google Scholar] [CrossRef]
- Li, B.L.; Peng, S.B.; Shen, R.P.; Yang, Z.L.; Yan, X.Y.; Li, X.F.; Li, R.R.; Li, C.Y.; Zhang, G.B. Development of a new index for automated mapping of ratoon rice areas using time-series normalized difference vegetation index imagery. Pedosphere 2022, 32, 576–587. [Google Scholar] [CrossRef]
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping patterns of annual crops: A remote sensing review. Remote Sens. 2022, 14, 2404. [Google Scholar] [CrossRef]
- Chabalala, Y.; Adam, E.; Ali, K.A. Machine learning classification of fused Sentinel-1 and Sentinel-2 image data towards mapping fruit plantations in highly heterogenous landscapes. Remote Sens. 2022, 14, 2621. [Google Scholar] [CrossRef]
- Wei, H.D.; Hu, Q.; Cai, Z.W.; Yang, J.Y.; Song, Q.; Yin, G.F.; Xu, B.D. An Object- and Topology-Based Analysis (OTBA) Method for Mapping Rice-Crayfish Fields in South China. Remote Sens. 2021, 13, 4666. [Google Scholar] [CrossRef]
- Wei, Y.; Lu, M.; Yu, Q.; Xie, A.; Hu, Q.; Wu, W. Understanding the dynamics of integrated rice-crawfish farming in Qianjiang county, China using Landsat time series images. Agric. Syst. 2021, 191, 103167. [Google Scholar] [CrossRef]
- Chen, Y.L.; Yu, P.H.; Chen, Y.Y.; Chen, Z.Y. Spatiotemporal dynamics of rice-crayfish field in Mid-China and its socioeconomic benefits on rural revitalisation. Appl. Geogr. 2022, 139, 102636. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Ma, L.; He, W.Q.; Zhou, L.; Lu, H.; Liu, G.; Huang, G.A. Comparing Object-Based and Pixel-Based Methods for Local Climate Zones Mapping with Multi-Source Data. Remote Sens. 2022, 14, 3744. [Google Scholar] [CrossRef]
- Song, Q.; Hu, Q.; Zhou, Q.; Hovis, C.; Xiang, M.; Tang, H.; Wu, W. In-season crop mapping with GF-1/WFV data by combining object-based image analysis and Random Forest. Remote Sens. 2017, 9, 1184. [Google Scholar] [CrossRef] [Green Version]
- Karimi, N.; Sheshangosht, S.; Eftekhari, M. Crop type detection using an object-based classification method and multi-temporal Landsat satellite images. Paddy Water Environ. 2022, 20, 395–412. [Google Scholar] [CrossRef]
- Xia, T.; Ji, W.; Li, W.; Zhang, C.; Wu, W. Phenology-based decision tree classification of rice-crayfish fields from Sentinel-2 imagery in Qianjiang, China. Int. J. Remote Sens. 2021, 42, 8124–8144. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Zhang, Y.; Wang, L.; Ying, G. Change detection for high-resolution remote sensing imagery using object-oriented change vector analysis method. In Proceedings of the 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2873–2876. [Google Scholar] [CrossRef]
- Ge, C.; Ding, H.; Molina, I.; He, Y.; Peng, D. Object-oriented change detection method based on spectral-spatial-saliency change information and fuzzy integral decision fusion for hr remote sensing images. Remote Sens. 2022, 14, 3297. [Google Scholar] [CrossRef]
- Huang, Q.; Meng, Y.; Chen, J.; Yue, A.; Lin, L. Landslide change detection based on spatio-temporal context. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 1095–1098. [Google Scholar] [CrossRef]
- National Aquatic Technology Extension Station of the People’s Republic of China. Report on the Industry Development of China’s Integrated Rice-fish Farming (2020). China Fish. 2020, 10, 12–19. Available online: https://kns.cnki.net/kns8/Detail?sfield=fn&QueryID=4&CurRec=5&recid=&FileName=SICA202107013&DbName=CJFDLAST2021&DbCode=CJFD&yx=&pr=&URLID= (accessed on 16 January 2022). (In Chinese).
- Chen, G.; Chen, Y.; Yu, H.; Zhou, L.; Zhuang, X. Accumulated temperature requirements of Echinochloa crus-galli seed-setting: A case study with populations collected from rice fields. Weed Biol. Manag. 2022, 22, 47–55. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.; Cao, Q.; Liang, Y.; Krienke, B.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Use of an active canopy sensor mounted on an unmanned aerial vehicle to monitor the growth and nitrogen status of winter wheat. Remote Sens. 2020, 12, 3684. [Google Scholar] [CrossRef]
- Wang, S.; Mo, G.; Sun, X.; Gong, Z.; Wang, Y. Development report of rice and fishery comprehensive planting and breeding industry in Sihong County, Jiangsu Province. Fish. Guide Be Rich 2021, 13, 13–18. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=YYZF202113006&uniplatform=NZKPT&v=SkjwbWSNHEZvJmLwHyBcyBhwPONcAeAUUGets6AOCMyaFM-l0FaJvOm_vQUsGlrc (accessed on 17 January 2022). (In Chinese).
- Rodriguez-Lopez, L.; Gonzalez-Rodriguez, L.; Duran-Llacer, I.; Garcia, W.; Cardenas, R.; Urrutia, R. Assessment of the diffuse attenuation coefficient of photosynthetically active radiation in a Chilean Lake. Remote Sens. 2022, 14, 4568. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xiao, P.F.; Feng, X.Z.; Feng, L.; Ye, N. Toward evaluating multiscale segmentations of high spatial resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3694–3706. [Google Scholar] [CrossRef]
- Li, P.J.; Xiao, X.B. Evaluation of multiscale morphological segmentation of multispectral imagery for land cover classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 2676–2679. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, J.; Xiao, L.; Pan, D. Optimizing multiscale segmentation with local spectral heterogeneity measure for high resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 2019, 157, 13–25. [Google Scholar] [CrossRef]
- Dragut, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef] [Green Version]
- d’Oleire-Oltmanns, S.; Eisank, C.; Dragut, L.; Blaschke, T. An object-based workflow to extract landforms at multiple scales from two distinct data types. IEEE Geosci. Remote Sens. Lett. 2013, 10, 947–951. [Google Scholar] [CrossRef]
- Trimble. eCognition Developer 9.0.1 Reference Book; Trimble Germany GmbH: Munich, Germany, 2014; Available online: https://scholar.google.com/scholar_lookup?title=eCognition+Developer+9.0.1+Reference+Book&author=Trimble&publication_year=2014 (accessed on 12 March 2022).
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Naji, T.A.H. Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot. In Proceedings of the Ibn Al-Haitham 1st International Scientific Conference on Biology, Chemistry, Computer Science, Mathematics, and Physics (IHSCICONF), Baghdad, Iraq, 13–14 December 2017. [Google Scholar] [CrossRef]
- Bilgili, B.C.; Satir, O.; Muftuoglu, V.; Ozyavuz, M. A simplified method for the determination and monitoring of green areas in urban parks using multispectral vegetation indices. J. Environ. Prot. Ecol. 2014, 15, 1059–1065. Available online: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=A+simplified+method+for+the+determination+and+monitoring+of+green+areas+in+urban+parks+using+multispectral+vegetation+indices&btnG= (accessed on 17 May 2022).
- Yang, F.; Liu, T.; Wang, Q.; Du, M.; Yang, T.; Liu, D.; Li, S.; Liu, S. Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters. J. Integr. Agric. 2021, 20, 2613–2626. [Google Scholar] [CrossRef]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. Isprs J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Sol’anka, J.; Kurcikova, M.; Chudy, F.; Sgem. Automatic classification of forest stand boundaries based on results of aerial photogrammetry. In Proceedings of the 14th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 17–26 June 2014; p. 55. Available online: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Automatic+classification+of+forest+stand+boundaries+based+on+results+of+aerial+photogrammetry&btnG= (accessed on 21 May 2022).
- Lavreniuk, M.; Kussul, N.; Shelestov, A.; Dubovyk, O.; Low, F. Object-based postprocessing method for crop classification maps. In Proceedings of the 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 7058–7061. [Google Scholar] [CrossRef]
- David, L.C.G.; Ballado, A.H. Mapping Mangrove Forest from LiDAR Data Using Object-Based Image Analysis and Support Vector Machine: The Case of Calatagan, Batangas. In Proceedings of the 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Cebu, Philippines, 9–12 December 2015; p. 461. [Google Scholar] [CrossRef]
- Ning, F.S.; Lee, Y.C. Combining Spectral Water Indices and Mathematical Morphology to Evaluate Surface Water Extraction in Taiwan. Water 2021, 13, 2774. [Google Scholar] [CrossRef]
- Hashimoto, N.; Murakami, Y.; Yamaguchi, M.; Ohyama, N.; Uto, K.; Kosugi, Y. Application of multispectral color enhancement for remote sensing. In Proceedings of the Conference on Image and Signal Processing for Remote Sensing XVII, Prague, Czech Republic, 19–21 September 2011. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Kou, W.; Jin, C.; Wang, J.; Li, X. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Opedes, H.; Mucher, S.; Baartman, J.E.M.; Nedala, S.; Mugagga, F. Land Cover Change Detection and Subsistence Farming Dynamics in the Fringes of Mount Elgon National Park, Uganda from 1978–2020. Remote Sens. 2022, 14, 102423. [Google Scholar] [CrossRef]
- Lidzhegu, Z.; Kabanda, T. Declining land for subsistence and small-scale farming in South Africa: A case study of Thulamela local municipality. Land Use Policy 2022, 119, 106170. [Google Scholar] [CrossRef]
- Yang, H.; Gao, J.P.; Xu, C.B.; Long, Z.; Feng, W.G.; Xiong, S.H.; Liu, S.W.; Tan, S. Infrared image change detection of substation equipment in power system using Random Forest. In Proceedings of the 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, China, 29–31 July 2017; pp. 332–337. [Google Scholar] [CrossRef]
- Lv, P.Y.; Zhong, Y.F.; Zhao, J.; Zhang, L.P. Unsupervised change detection model based on hybrid conditional random field for high spatial resolution remote sensing imagery. In Proceedings of the 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1863–1866. [Google Scholar] [CrossRef]
- Shi, J.J.; Huang, J.F. Monitoring Spatio-Temporal Distribution of Rice Planting Area in the Yangtze River Delta Region Using MODIS Images. Remote Sens. 2015, 7, 8883–8905. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.H.; Zheng, Y.; Shen, R.Q.; Ye, T.; Zhao, W.Z.; Dong, J.; Ma, H.Q.; Yuan, W.P. High Resolution Distribution Dataset of Double-Season Paddy Rice in China. Remote Sens. 2021, 13, 4609. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Baudry, J.; Le Roux, V.; Spicher, F.; Lacoux, J.; Roger, D.; Hubert-Moy, L. Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages. Isprs J. Photogramm. Remote Sens. 2020, 163, 231–256. [Google Scholar] [CrossRef]
- Mengen, D.; Montzka, C.; Jagdhuber, T.; Fluhrer, A.; Brogi, C.; Baum, S.; Schuttemeyer, D.; Bayat, B.; Bogena, H.; Coccia, A.; et al. The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sens. 2021, 13, 825. [Google Scholar] [CrossRef]
Purpose | Year | Rice Field Fallow Period | Rice Growth Period | Satellite |
---|---|---|---|---|
Method establishment | 2021 | 1 May 2021 | 3 October 2021 | Sentinel-2A/Sentinel-2B |
Method validation | 2019 | 17 April 2019 | 24 September 2019 | Sentinel-2B/Sentinel-2B |
Feature Category | Feature Names | Formulas | Parameters | References |
---|---|---|---|---|
Spectral features | Mean R, G, B, NIR, SWIR1, SWIR2, Band1, Band5, Band6, Band7, Band8A, Band9 | R, G, B, NIR, SWIR1, SWIR2 = Red band, green band, blue band, NIR band, SWIR 1, and SWIR 2 band. Bandx = the xth band of Sentinel-2. Ρ = the spectral reflectance of a certain band. xi represents the gray value of the ith pixel. n = the total number of pixels of the object. = the average brightness of the image object in the band. = the average brightness of the image in the band [34]. | [34] | |
Brightness | [34] | |||
Max.Diff | [34] | |||
Automated water extraction index (AWEI) | | [35] | ||
Normalized difference vegetation index (NDVI) | [36] | |||
Enhanced vegetation index (EVI) | [36] | |||
Difference vegetation index (DVI) | [37] | |||
Green vegetation index (GVI) | [38] | |||
Ratio vegetation index (RVI) | [39] | |||
Modification of normalized difference water index (MNDWI) | [40] | |||
Textural features | GLCM Entropy | = the row number. = the column number. is the normalized value of cell i, j. N = the row or column number. | [34] | |
GLCM Mean | ||||
GLCM Contrast | ||||
GLCM Std Dev | ||||
GLCM Homogeneity | ||||
Geometric features | Area | = the total number of pixels of the object . = the pixel size. = the ratio of the eigenvalue . is the ratio of the bounding box . = the length of the outer boundary. is the length of the inner boundary. | [34] | |
Length | , | |||
Length/Width | ||||
Shape index |
Feature Types | Rice–Crayfish Field | Non-Rice–Crayfish Field | Producer’s Accuracy/% |
---|---|---|---|
Rice-crayfish field | 124 | 2 | 93.93 |
Non-rice-crayfish field | 12 | 295 | 98.41 |
User’s Accuracy% | 91.76 | 99.33 | |
Overall Accuracy/% | 96.77 | ||
Kappa coefficient | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Wang, D.; Yang, H.; Hou, H.; Li, C.; Li, Z. A Bi-Temporal-Feature-Difference- and Object-Based Method for Mapping Rice-Crayfish Fields in Sihong, China. Remote Sens. 2023, 15, 658. https://doi.org/10.3390/rs15030658
Ma S, Wang D, Yang H, Hou H, Li C, Li Z. A Bi-Temporal-Feature-Difference- and Object-Based Method for Mapping Rice-Crayfish Fields in Sihong, China. Remote Sensing. 2023; 15(3):658. https://doi.org/10.3390/rs15030658
Chicago/Turabian StyleMa, Siqi, Danyang Wang, Haichao Yang, Huagang Hou, Cheng Li, and Zhaofu Li. 2023. "A Bi-Temporal-Feature-Difference- and Object-Based Method for Mapping Rice-Crayfish Fields in Sihong, China" Remote Sensing 15, no. 3: 658. https://doi.org/10.3390/rs15030658
APA StyleMa, S., Wang, D., Yang, H., Hou, H., Li, C., & Li, Z. (2023). A Bi-Temporal-Feature-Difference- and Object-Based Method for Mapping Rice-Crayfish Fields in Sihong, China. Remote Sensing, 15(3), 658. https://doi.org/10.3390/rs15030658