A Dual Neighborhood Hypergraph Neural Network for Change Detection in VHR Remote Sensing Images
Abstract
:1. Introduction
- (1)
- A novel dual neighborhood hypergraph neural network (DNHGNN) framework for CD is proposed, which can adequately exploit the complex relationships and interacting information of ground objects that commonly exist in VHR remote sensing images. To the best of our knowledge, it is the first HGNN-based method in the field of remote sensing CD.
- (2)
- A dual neighborhood is defined, which contains a spatial neighborhood according to the adjacent relationships of object under the fine scale and a structural neighborhood according to the father-child relationships between scales. Based on the dual neighborhood, reliable hyperedges can be obtained, which better represent the complicated interactive relationships of ground objects in VHR remote sensing images.
- (3)
- The multiscale object-based technique is integrated into hypergraph construction, which not only yields to high-level node features as inputs of HGNN, but also substantially reduces the number of nodes, making the hypergraph convolution on the image scene feasible and efficient.
2. Related Work
2.1. Graph/Hypergraph-Based Change Detection
2.2. Graph/Hypergraph Neural Network
3. Proposed Method
3.1. Multiscale Segmentation and Feature Extraction
3.2. Hypergraph Construction
3.3. Hypergraph Convolution
4. Experiments and Analysis
4.1. Descriptions of Data Sets
4.2. Implementation and Evaluation Metrics
4.3. Experiments on Optical Images
- (1)
- FC-Siam-con: The FC-Siam-con [58] uses a Siamese encoding stream to extract deep features from bi-temporal images. The features were then concatenated in the decoding stream for CD.
- (2)
- FC-Siam-diff: Different from the FC-Siam-con, FC-Siam-diff [58] uses absolute difference between the bi-temporal features to decide changed degrees.
- (3)
- Siam-NestedUNet: The Siam-NestedUNet [67] uses a Siamese semantic segmentation network UNet++ to extract features of different resolution. Following that, the features are fed into an ensemble channel attention module.
- (4)
- DSIFN: A deeply supervised image fusion network (DSIFN) [68] has been proposed which consists of a shared deep feature network and a difference discrimination network, which utilizes the channel attention module and spatial attention module.
- (5)
- DSAMNet: The deeply supervised attention metric-based network (DSAMNet) employs a metric module to learn change maps by means of deep metric learning, in which convolutional block attention modules are integrated to provide more discriminative features [65].
- (6)
- GCNCD: A GCN-based method that utilizes several types of hand-crafted features to build to feature sets of nodes [50].
- (7)
- MSGCN: A multiscale GCN has been proposed which can fuse the outputs of GCN under different segmented scales [51].
4.4. Experiments on SAR Images
- (1)
- PCA-Kmeans. A PCA-based method [7], in which the K-means approach was used for binary classification.
- (2)
- ELM. An extreme learning machine-based method for CD in SAR images [69].
- (3)
- (4)
- CWNN. The method used convolutional wavelet neural network (CWNN) instead of CNN to extract robust features with better noise immunity for SAR image CD [72].
- (5)
- CNN. The method used a novel CNN framework without any preprocessing operations, which can automatically extract the spatial characteristics [73].
- (6)
- MSGCN [51].
4.5. Experiments on Heterogeneous Optical/SAR Images
- (1)
- FPMS [74]. The fractal projection and Markovian segmentation-based method (FPMS) projects the pre-event image to the domain of post-event image by fractal projection. Then, an MRF segmentation model is employed to obtain change maps.
- (2)
- CICM [75]. A concentric circular invariant convolution model (CICM) is proposed to project one image into the imaging modality of the other.
- (3)
- IRG-MCS [76]. The authors define an Iterative robust similarity graph to measure changed degree.
- (4)
- SCASC. A method which uses a regression model with sparse constrained adaptive structure consistency [77].
- (5)
- GIR-MRF [78]. A structured graph learning based method, which first learns a robust graph to capture the local and global structure information of the image, and then projects the graph to the domain of the other image to complete the image regression.
- (6)
- MSGCN [51].
5. Discussion
5.1. Robustness to the Scale Parameters
5.2. Influence of the Ratio of Labeled Samples
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 2010, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Canuti, P.; Casagli, N.; Ermini, L.; Fanti, R.; Farina, P. Landslide activity as a geoindicator in Italy: Significance and new perspectives from remote sensing. Environ. Geol. 2004, 45, 907–919. [Google Scholar] [CrossRef]
- Huang, X.; Gao, Y.; Li, J. An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images. Remote Sens. Environ. 2020, 244, 111802. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Bruzzone, L.; Prieto, D.F. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Thonfeld, F.; Feilhauer, H.; Braun, M.; Menz, G. Robust change vector analysis (RCVA) for multi-sensor very high resolution optical satellite data. Int. J. Appl. Earth Observ. Geoinf. 2016, 50, 131–140. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Wu, C.; Du, B.; Zhang, L. Slow feature analysis for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2858–2874. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2963–2972. [Google Scholar] [CrossRef]
- Inglada, J.; Mercier, G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans. Geosci. Remote Sens. 2005, 45, 1432–1445. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Li, H.; Yang, W.; Fu, K.; Sun, Y.; Emery, W.J. Unsupervised change detection of SAR images based on variational multivariate Gaussian mixture model and Shannon entropy. IEEE Geosci. Remote Sens. Lett. 2019, 16, 826–830. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Mercier, G.; He, Y.; Pan, Q. Change detection in heterogeneous remote sensing images via homogeneous pixel transformation. IEEE Trans. Image Process. 2018, 27, 1822–1834. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, V.; Dobigeon, N.; Cavalcanti, Y.; Oberlin, T.; Chabert, M. Coupled dictionary learning for unsupervised change detection between multimodal remote sensing images. Comput. Vis. Image Underst. 2019, 189, 102817. [Google Scholar] [CrossRef] [Green Version]
- Chatelain, F.; Tourneret, J.Y.; Inglada, J. Change detection in Multisensor SAR images using bivariate Gamma distributions. IEEE Trans. Image Process. 2008, 17, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Cao, Z. An improved MRF-based change detection approach for multitemporal remote sensing imagery. Signal Process. 2013, 93, 163–175. [Google Scholar] [CrossRef]
- Chang, N.; Han, M.; Yao, W.; Chen, L.; Xu, S. Change detection of land use and land cover in an urban region with SPOT-5 images and partial Lanczos extreme learning machine. J. Appl. Remote Sens. 2010, 4, 043551. [Google Scholar]
- Gong, M.; Zhang, P.; Liu, J. Coupled dictionary learning for change detection from multisource data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7077–7091. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.; Zhang, M.; Shu, Z.; Zhou, H. Object-level change detection with a dual correlation attention-guided detector. ISPRS J. Photogramm. Remote Sens. 2021, 177, 147–160. [Google Scholar] [CrossRef]
- Yousif, O.; Ban, Y. A novel approach for object-based change image generation using multitemporal high-resolution SAR images. Int. J. Remote Sens. 2017, 38, 1765–1787. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, S.; Du, P.; Liang, H.; Xia, J.; Li, Y. Object-based change detection in urban areas form high spatial resolution images based on multiple features and ensemble learning. Remote Sens. 2018, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Liu, T.; Benediktsson, J.A. Object-oriented key point vector distance for binary land cover change detection using VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6524–6533. [Google Scholar] [CrossRef]
- Zhan, T.; Gong, M.; Jiang, X.; Zhang, M. Unsupervised scale-driven change detection with deep spatial-spectral feature for VHR images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5653–5665. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Chen, S.; Shi, Z. Semantic-aware dense representation learning for remote sensing image change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5630018. [Google Scholar] [CrossRef]
- Bandara, W.; Patel, V.M. A transformer-based Siamese network for change detection. IGARSS 2022, 207–210. [Google Scholar]
- Chen, H.; Qi, Z.; Shi, Z. Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5607514. [Google Scholar] [CrossRef]
- Liu, J.; Chen, K.; Xu, G.; Sun, X.; Yan, M.; Diao, W.; Han, H. Convolutional neural network-based transfer learning for optical aerial images change detection. IEEE Geosci. Remote Sens Lett. 2020, 17, 127–131. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Wu, C.; Chen, H.; Du, B.; Zhang, L. Unsupervised change detection in multitemporal VHR image based on deep kernel PCA convolutional mapping network. IEEE Trans. Cybern. 2021, 52, 12084–12098. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, M.; Yang, G.; Zhang, L. ESCNet: An end-to-end superpixel-enhanced change detection network for vrey-high-resolution remote sensing images. IEEE Trans. Neural Netw. Learn. Syst 2023, 15, 694. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, C.; Zhang, Y.; Wang, N.; Luo, L. Fully convolutional siamese networks based change detection for optical aerial images with focal contrastive loss. Neurocomputing 2021, 457, 155–167. [Google Scholar] [CrossRef]
- Gong, M.; Niu, X.; Zhang, P.; Li, Z. Generative adversarial networksfor change detection in multispectral imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2310–2314. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Dong, Y. Style transformation-based spatial-spectral feature learning for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2020, 60, 5401515. [Google Scholar] [CrossRef]
- Pham, M.T.; Mercier, G.; Michel, J. Change detection between SAR image using a pointwise approach and graph theory. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2020–2032. [Google Scholar] [CrossRef]
- Jia, L.; Wang, J.; Ai, J.; Jiang, Y. A hierarchical spatial-temporal graph-kernel for high-resolution SAR image change detection. Int. J. Remote Sens. 2020, 41, 3866–3885. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Qin, Y.; Ni, W.; Zhang, H. An object-based graph model for unsupervised change detection in high resolution remote sensing images. Int. J. Remote Sens. 2021, 42, 6212–6230. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Li, X.; Sun, H.; Kuang, G. Nonlocal patch similarity based heterogeneous remote sensing change detection. Pattern Recognit. 2021, 109, 107598. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Yang, X.; Jia, L.; Fang, S. Unsupervised change detection between SAR images based on hypergraphs. ISPRS J. Photogramm. Remote Sens. 2020, 164, 61–72. [Google Scholar] [CrossRef]
- Gori, M.; Monfardini, G.; Scarselli, F. A new model for learningin graph domains. in Proc. IEEE Int. Joint Conf. Neural Netw. 2005, 2, 729–734. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A comprehensive survey on graph neural neetworks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruna, J.; Zaremba, W.; Szlam, A.; Lecun, Y. Spectral networks and locally connected networks on graphs. arXiv 2014, arXiv:1312.6203. [Google Scholar]
- Huang, Z.; Li, X.; Ye, Y.; Michael, K.N. MR-GCN: Multi-relational graph convolutional networks based on generalized tensor product. IJCAI 2020, 20, 1258–1264. [Google Scholar]
- Shi, M.; Tang, Y.; Zhu, X.; Wilson, D.; Liu, J. Multi-class imbalanced graph convolutional network learning. IJCAI 2020, 20, 2879–2885. [Google Scholar]
- Defferrard, M.; Bresson, X.; Vander Gheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. arXiv 2016, arXiv:1606.09375. [Google Scholar]
- Levie, R.; Monti, F.; Bresson, X.; Bronstein, M.M. CayleyNets: Graph convolutional neural networks with complex rational spectral filters. IEEE Trans. Signal Process. 2019, 67, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2017, arXiv:1609.02907. [Google Scholar]
- Bacciu, D.; Errica, F.; Micheli, A. Contextual graph Markov model: A deep and generative approach to graph processing. arXiv 2018, arXiv:1805.10636. [Google Scholar]
- Xu, B.; Shen, H.; Cao, Q.; Qiu, Y.; Cheng, X. Graph wavelet neural network. arXiv 2019, arXiv:1904.07785. [Google Scholar]
- Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y. Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 241–245. [Google Scholar] [CrossRef]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale dynamic graph convolutional networkfor hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3162–3177. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Mou, L.; Zhu, X.; Bovolo, F.; Bruzzone, L. Semisupervised change detection using graph convolutional network. IEEE Geosci. Remote Sens. Lett. 2020, 18, 607–611. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Qin, Y.; Ni, W.; Zhang, H.; Fu, R.; Sun, Y. A multiscale convolutional network for change detection in homogeneous and heterogeneous remote sensing images. Int. J. Appl. Earth Observ. Geoinf. 2021, 105, 102615. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, H.; Mou, L.; Liu, F.; Zhang, X.; Zhu, X.; Jiao, L. An unsupervised remote sensing change detection method based on multiscale graph convolutional network and metric learning. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Feng, Y.; You, H.; Zhang, Z.; Ji, R.; Gao, Y. Hypergraph neural networks. arXiv 2019, arXiv:1809.09401. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Wei, Y.; Feng, Y.; Cao, J.; Gao, Y. Dynamic hypergraph neural networks. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), Macao, China, 10–16 August 2019. [Google Scholar]
- Baatz, M.; Schape, A. Multiresolution segmentation: An Optimization Approach for High Quality Multiscale Image Segmentation. Available online: https://cir.nii.ac.jp/crid/1572261550679971840 (accessed on 17 January 2023).
- Yang, Y.; Li, H.; Han, Y.; Gu, H. High resolution remote sensing image segmentation based on graph theory and fractal net evolution approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Xiang, Y.; You, H. An object-based hierarchical compound classification method for change detection in heterogeneous optical and SAR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9941–9959. [Google Scholar] [CrossRef]
- Daudt, R.C.; Saux, B.L.; Boulch, A. Fully convolutional Siamese networks for change detection. arXiv 2018, arXiv:1810.08462. [Google Scholar]
- Liu, R.; Jiang, D.; Zhang, L.; Zhang, Z. Deep depthwise separable convolutional network for change detection in optical aerial images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 1109–1118. [Google Scholar] [CrossRef]
- Daudt, R.C.; Saux, B.L.; Boulch, A.; Gousseau, Y. Urban change detection for multispectral earth observation using convolutional neural networks. arXiv 2018, arXiv:1810.08468. [Google Scholar]
- Benedek, C.; Szirnyi, T. Change detection in optical aerial imagesby a multilayer conditional mixed markov model. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3416–3430. [Google Scholar] [CrossRef] [Green Version]
- Fujita, A.; Sakurada, K.; Imaizumi, T.; Ito, R.; Hikosaka, S.; Nakamura, R. Damage detection from aerial images via convolutional neural networks. In Proceedings of the 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 5–8. [Google Scholar]
- Bai, S.; Zhang, F.; Philip. H.S. Torr. Hypergraph convolution and hypergraph attention. Patten Recognt. 2021, 110, 107637. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. arXiv 2017, arXiv:1708.02002. [Google Scholar]
- Shi, Q.; Liu, M.; Li, S.; Liu, X.; Wang, F.; Zhang, L. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5604816. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2019, 51, 574–586. [Google Scholar] [CrossRef]
- Li, K.; Li, Z.; Fang, S. Siamese NestedUnet networks for change detection of high resolution satellite image. In Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System, Xiamen, China, 27–29 October 2020. [Google Scholar]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Cao, F.; Dong, J.; Li, B.; Xu, Q.; Xie, C. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine. J. Appl. Remote sens. 2016, 10, 046019. [Google Scholar]
- Wang, R.; Zhang, J.; Chen, J.; Jiao, L.; Wang, M. Imbalanced learning-based automatic SAR images change detection by morphologically supervised PCA-net. IEEE Geosci. Remote Sens. Lett. 2019, 16, 554–558. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Dong, J.; Li, B.; Xu, Q. Automatic change detection in synthetic aperture radar images based on PCANet. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1792–1796. [Google Scholar] [CrossRef]
- Gao, F.; Wang, X.; Gao, Y.; Dong, J.; Wang, S. Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 8, 1240–1244. [Google Scholar] [CrossRef]
- Li, Y.; Peng, C.; Chen, Y.; Jiao, L.; Zhou, L.; Shang, R. A deep learning method for change detection in synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5751–5763. [Google Scholar] [CrossRef]
- Mignotte, M. A fractal projection and Markovian segmentation-based approach for multimodal change detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8046–8058. [Google Scholar] [CrossRef]
- Touati, R.; Mignotte, M.; Dahmane, M. Multimodal change detectionin remote sensing images using an unsupervised pixel pairwise based Markov random field model. IEEE Trans. Image Process. 2019, 29, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lei, L.; Guan, D.; Kuang, G. Iterative robust graph for unsupervised change detection of heterogeneous remote sensing images. IEEE Trans. Image Process. 2021, 30, 6277–6291. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lei, L.; Li, M.; Kuang, G. Sparse-constrained adaptive structure consistency-based unsupervised image regression for heterogeneous remote-sensing change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4405814. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Li, X.; Tan, X.; Kuang, G. Structured graph based image regression for unsupervised multimodal change detection. ISPRS J. Photogramm. Remote Sens. 2022, 185, 16–31. [Google Scholar] [CrossRef]
Data set | Method | FAR | MAR | OA | Kappa | F1 | IOU |
---|---|---|---|---|---|---|---|
SYSU-CD | FC-Siam-con | 4.57 | 36.29 | 88.91 | 62.30 | 65.21 | 55.17 |
FC-Siam-diff | 7.77 | 39.27 | 86.51 | 54.03 | 58.30 | 48.65 | |
Siam-NestedUnet | 3.26 | 24.41 | 92.12 | 73.47 | 77.02 | 65.12 | |
DSIFN | 5.20 | 18.75 | 91.79 | 72.72 | 76.29 | 63.86 | |
DSAMNet | 2.97 | 17.77 | 93.60 | 78.29 | 82.65 | 72.33 | |
GCNCD | 1.92 | 20.02 | 95.01 | 82.21 | 88.01 | 80.13 | |
MSGCN | 1.83 | 15.06 | 95.94 | 85.22 | 89.91 | 82.77 | |
DNHGNN | 2.08 | 10.14 | 96.72 | 87.88 | 91.40 | 85.04 | |
WHU-CD | FC-Siam-con | 4.31 | 44.79 | 91.03 | 52.46 | 56.10 | 42.89 |
FC-Siam-diff | 4.63 | 44.07 | 90.88 | 49.60 | 53.22 | 41.77 | |
Siam-NestedUnet | 0.89 | 53.55 | 93.07 | 54.54 | 60.05 | 47.32 | |
DSIFN | 2.39 | 24.78 | 94.49 | 67.83 | 71.37 | 60.59 | |
DSAMNet | 3.35 | 15.09 | 95.06 | 74.22 | 80.07 | 67.19 | |
GCNCD | 1.70 | 34.13 | 95.30 | 70.74 | 75.10 | 62.54 | |
MSGCN | 1.78 | 24.53 | 96.01 | 76.83 | 81.11 | 70.66 | |
DNHGNN | 1.16 | 18.97 | 97.05 | 82.19 | 85.42 | 74.12 | |
LEVIR-CD | FC-Siam-con | 6.23 | 41.91 | 88.57 | 56.57 | 59.20 | 48.37 |
FC-Siam-diff | 3.97 | 31.24 | 90.69 | 63.41 | 67.45 | 55.44 | |
Siam-NestedUnet | 0.54 | 42.98 | 89.88 | 61.74 | 63.54 | 52.83 | |
DSIFN | 2.42 | 25.21 | 93.89 | 67.52 | 71.28 | 57.21 | |
DSAMNet | 3.32 | 29.45 | 94.12 | 64.96 | 68.91 | 56.01 | |
GCNCD | 2.31 | 26.79 | 92.80 | 66.88 | 70.77 | 56.84 | |
MSGCN | 1.76 | 23.89 | 95.49 | 72.71 | 75.02 | 60.56 | |
DNHGNN | 1.37 | 23.01 | 95.70 | 74.86 | 79.16 | 64.21 |
Methods | Wuhan | Shanghai | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FAR | MAR | OA | Kappa | F1 | IOU | FAR | MAR | OA | Kappa | F1 | IOU | |
PCA-Kmeans | 11.80 | 37.22 | 84.20 | 49.11 | 54.11 | 45.85 | 11.51 | 40.11 | 85.56 | 38.52 | 42.22 | 35.10 |
ELM | 4.15 | 37.21 | 90.65 | 62.45 | 66.03 | 50.36 | 8.89 | 39.80 | 88.06 | 43.33 | 46.21 | 36.97 |
S-PCA-Net | 2.71 | 32.91 | 92.54 | 70.58 | 73.21 | 58.64 | 4.43 | 39.74 | 92.08 | 55.65 | 60.16 | 48.85 |
CWNN | 3.61 | 28.92 | 92.41 | 71.21 | 75.87 | 61.77 | 10.97 | 36.50 | 86.51 | 40.93 | 44.37 | 35.81 |
CNN | 3.41 | 28.87 | 92.59 | 71.78 | 77.10 | 63.74 | 0.76 | 57.08 | 93.68 | 54.27 | 59.54 | 46.22 |
MSGCN | 2.97 | 16.73 | 94.87 | 80.57 | 83.30 | 71.92 | 0.77 | 42.71 | 94.89 | 65.49 | 70.09 | 59.94 |
DNHGNN | 2.30 | 15.64 | 95.60 | 83.17 | 84.94 | 74.33 | 2.80 | 29.15 | 94.60 | 69.14 | 73.58 | 62.45 |
Data set | Method | FAR | MAR | OA | Kappa | F1 | IOU |
---|---|---|---|---|---|---|---|
Data 1 | FPMS | 2.55 | 10.28 | 97.01 | 75.73 | 78.86 | 65.36 |
CICM | 8.36 | 34.32 | 90.17 | 38.41 | 44.21 | 33.56 | |
IRG-MCS | 1.18 | 27.74 | 97.21 | 74.36 | 76.89 | 64.13 | |
SCASC | 1.21 | 17.98 | 97.65 | 80.47 | 82.24 | 71.20 | |
GIR-MRF | 2.11 | 6.07 | 97.77 | 81.62 | 85.11 | 75.23 | |
MSGCN | 1.11 | 13.03 | 98.15 | 84.34 | 86.45 | 76.80 | |
DNHGNN | 0.56 | 13.26 | 98.66 | 88.10 | 89.82 | 79.88 | |
Data 2 | FPMS | 6.57 | 11.24 | 93.03 | 64.96 | 68.66 | 52.28 |
CICM | 8.54 | 82.75 | 85.08 | 13.47 | 16.58 | 9.04 | |
IRG-MCS | 4.00 | 45.50 | 92.43 | 51.19 | 55.32 | 38.24 | |
SCASC | 6.63 | 30.40 | 91.33 | 53.30 | 57.99 | 40.83 | |
GIR-MRF | 6.48 | 16.86 | 92.63 | 62.04 | 65.98 | 49.23 | |
MSGCN | 3.30 | 14.58 | 95.73 | 75.14 | 77.48 | 63.23 | |
DNHGNN | 1.05 | 9.93 | 98.19 | 88.53 | 89.52 | 81.03 | |
Data 3 | FPMS | 10.27 | 44.02 | 85.66 | 40.30 | 48.45 | 31.97 |
CICM | 4.95 | 53.21 | 89.24 | 45.16 | 51.14 | 34.68 | |
IRG-MCS | 8.93 | 80.23 | 81.82 | 12.14 | 13.23 | 8.08 | |
SCASC | 6.58 | 47.76 | 88.47 | 45.60 | 52.16 | 35.28 | |
GIR-MRF | 8.64 | 38.38 | 87.78 | 47.87 | 54.83 | 37.77 | |
MSGCN | 1.29 | 17.10 | 96.81 | 84.40 | 85.20 | 75.75 | |
DNHGNN | 1.57 | 4.05 | 98.13 | 91.44 | 92.51 | 86.06 | |
Data 4 | FPMS | 7.96 | 82.12 | 83.86 | 11.76 | 14.11 | 9.23 |
CICM | 5.85 | 87.21 | 83.78 | 10.73 | 13.54 | 8.87 | |
IRG-MCS | 8.79 | 88.12 | 81.56 | 10.12 | 13.01 | 8.24 | |
SCASC | 4.89 | 14.28 | 94.03 | 73.13 | 76.69 | 62.19 | |
GIR-MRF | 6.22 | 11.99 | 93.12 | 70.68 | 74.56 | 59.43 | |
MSGCN | 0.53 | 10.82 | 98.29 | 91.34 | 92.29 | 85.69 | |
DNHGNN | 0.38 | 6.19 | 98.95 | 94.77 | 95.36 | 91.13 | |
Data 5 | FPMS | 5.24 | 51.11 | 91.73 | 39.43 | 43.84 | 28.07 |
CICM | 9.35 | 39.68 | 88.65 | 35.65 | 41.22 | 25.96 | |
IRG-MCS | 9.92 | 84.25 | 85.47 | 14.10 | 17.20 | 9.02 | |
SCASC | 3.86 | 3.95 | 96.14 | 74.63 | 76.64 | 62.13 | |
GIR-MRF | 3.64 | 4.57 | 96.30 | 75.32 | 77.26 | 62.95 | |
MSGCN | 0.13 | 17.54 | 98.72 | 88.79 | 89.46 | 80.94 | |
DNHGNN | 0.19 | 9.56 | 99.19 | 93.22 | 93.65 | 88.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Fu, R.; Liu, Q.; Ni, W.; Cheng, K.; Li, B.; Sun, Y. A Dual Neighborhood Hypergraph Neural Network for Change Detection in VHR Remote Sensing Images. Remote Sens. 2023, 15, 694. https://doi.org/10.3390/rs15030694
Wu J, Fu R, Liu Q, Ni W, Cheng K, Li B, Sun Y. A Dual Neighborhood Hypergraph Neural Network for Change Detection in VHR Remote Sensing Images. Remote Sensing. 2023; 15(3):694. https://doi.org/10.3390/rs15030694
Chicago/Turabian StyleWu, Junzheng, Ruigang Fu, Qiang Liu, Weiping Ni, Kenan Cheng, Biao Li, and Yuli Sun. 2023. "A Dual Neighborhood Hypergraph Neural Network for Change Detection in VHR Remote Sensing Images" Remote Sensing 15, no. 3: 694. https://doi.org/10.3390/rs15030694
APA StyleWu, J., Fu, R., Liu, Q., Ni, W., Cheng, K., Li, B., & Sun, Y. (2023). A Dual Neighborhood Hypergraph Neural Network for Change Detection in VHR Remote Sensing Images. Remote Sensing, 15(3), 694. https://doi.org/10.3390/rs15030694