Interannual Variability of Extreme Precipitation during the Boreal Summer over Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. High-Resolution Precipitation Products
- (1)
- The gridded daily precipitation data set from 1961–2021 with a resolution of 0.25° latitude × 0.25° longitude, CN05.1, were interpolated using more than 2400 meteorological observation stations in China, which were developed by the National Climate Center and the China Meteorological Administration [40].
- (2)
- The daily Asian precipitation highly-resolved observational data integration towards evaluation (APHRODITE) product developed by the Research Institute for Humanity and Nature (RIHN), Japan, and the Meteorological Research Institute of the Japan Meteorological Agency (MRI/JMA), was created from dense rain-gauge data by interpolating the ratio of the station value to climatology [41]. We used V1901, the latest version, with a spatial resolution of 0.25° latitude × 0.25° longitude on the available data, i.e., during 1998–2015 (http://aphrodite.st.hirosaki-u.ac.jp/products.html (accessed on 20 June 2021)).
- (3)
- The Climate Prediction Center (CPC) of the National Oceanic and Atmospheric Administration (NOAA) has also provided daily high-resolution precipitation data, from 1979 to the present, with a resolution of 0.5° latitude × 0.5° longitude. The CPC collects daily precipitation data from the River Forecast Centers (RFC), the Hydrologic Automated Data System (HADS), the observed Climate Anomaly Monitoring System (CAMS), and the National Weather Service (NWS). National collections from meteorological agencies in Mexico and countries in South America, East Asia, and Africa were also used. The objective analysis technique of optimum interpolation utilized to create a suite of unified precipitation products is available https://www.psl.noaa.gov/data/gridded/data.cpc.globalprecip.html (accessed on 1 January 2023)) [42].
- (4)
- Besides the aforementioned products, we used satellite daily Tropical Rainfall Measuring Mission (TRMM) 3B42-V7 precipitation data with a spatial resolution of 0.25° latitude × 0.25° longitude. An optimal combination of the TRMM Microwave Imager (TMI), Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer (AMSR), and Advanced Microwave Sounding (AMSU) were employed to reproduce the TRMM 3B42-V7 product. Due to the limitation of remote sensing technology in high-altitude and complex terrain areas, their results may have biases. Unfortunately, this product only covers regions from 180°W to 180°E and 50°S to 50°N during the years 1998–2019 (https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7 (accessed on 23 November 2021)) [43].
2.2. Other Datasets
2.3. Methods
3. Results
3.1. Evaluation of Precipitation Products in NWC
3.2. Spatiotemporal Features of R95TOT in NWC
3.3. Anomalous Atmospheric Patterns for Interannual R95TOT in NWC
3.4. Impacts of the Western Pacific SST on Interannual R95TOT in NWC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Ma, Z. Decadal changes in summer precipitation over arid northwest China and associated atmospheric circulations. Int. J. Climatol. 2018, 38, 4496–4508. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T. Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos. 2017, 122, 9060–9075. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhang, Y.; Hong, S. Temporal and spatial variations of precipitation in northwest China during 1960–2013. Atmos. Res. 2017, 183, 283–295. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Shi, X.; Chen, Z.; Li, W. Temperature and precipitation changes in different environments in the arid region of northwest China. Theor. Appl. Climatol. 2013, 112, 589–596. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and future climate change in northwest China. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Chen, D.; Li, J.; Wang, S.; Zhou, Q.; Yin, G.; Guo, M. “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol. 2019, 39, 1072–1091. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, X.; Yu, H.; Xie, Y.; Jin, H. Contributions of radiative factors to enhanced dryland warming over East Asia. J. Geophys. Res. Atmos. 2017, 122, 7723–7736. [Google Scholar] [CrossRef]
- Long, Y.; Xu, C.; Liu, F.; Liu, Y.; Yin, G. Evaluation and projection of wind speed in the arid region of northwest China based on CMIP6. Remote Sens. 2021, 13, 4076. [Google Scholar] [CrossRef]
- IPCC. Climate Change Impacts, Adaptation and Vulnerability. Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; Volume 2. [Google Scholar]
- Chen, G.; Huang, R. Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China. J. Clim. 2012, 25, 7834–7851. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, Q.; Liu, M. Extreme precipitation changes in the semiarid region of Xinjiang, northwest China. Adv. Meteorol. 2015, 2015, 215840. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Shen, Y. Signal, impact and outlook of climatic shift from warm-dry to warm-humid in northwest China. Sci. Technol. Rev. 2003, 2, 54–57. [Google Scholar]
- Lu, S.; Hu, Z.; Yu, H.; Fan, W.; Fu, C.; Wu, D. Changes of extreme precipitation and its associated mechanisms in northwest China. Adv. Atmos. Sci. 2021, 38, 1665–1681. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature. 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Wan, W.; Long, D.; Hong, Y.; Ma, Y.; Yuan, Y.; Xiao, P.; Duan, H.; Han, Z.; Gu, X. A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Sci. Data 2016, 3, 160039. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Zhu, B.; Yang, C.; Wei, G.; Meng, X.; Long, A.; Yang, G. Study on the characteristics of future precipitation in response to external changes over arid and humid basins. Sci. Rep. 2017, 7, 15148. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yu, Z.; Yang, M.; Ito, E.; Wang, S.; Madsen, D.B.; Huang, X.; Zhao, Y.; Sato, T.; Birks, H.J.B.; et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev. 2008, 27, 351–364. [Google Scholar] [CrossRef]
- Chen, F.-H.; Chen, J.-H.; Holmes, J.; Boomer, I.; Austin, P.; Gates, J.B.; Wang, N.-L.; Brooks, S.J.; Zhang, J.-W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev. 2010, 29, 1055–1068. [Google Scholar] [CrossRef]
- Huang, W.; Feng, S.; Chen, J.; Chen, F. Physical mechanisms of summer precipitation variations in the Tarim Basin in northwestern China. J. Clim. 2015, 28, 3579–3591. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Chen, H.; Ma, Q.; Teshome, A. North Atlantic multidecadal variability enhancing decadal extratropical extremes in boreal late summer in the early twenty-first century. J. Clim. 2020, 33, 6047–6064. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ma, Q.; Chen, H.; Zhao, S.; Chen, Z. Increasing warm-season precipitation in Asian drylands and response to reducing spring snow cover over the Tibetan Plateau. J. Clim. 2021, 34, 1–69. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Ma, Q.; Li, S.; Niu, M. Multi-timescale modulation of North Pacific Victoria mode on Central Asian vortices causing heavy snowfall. Clim. Dyn. 2022, 2022, 1–18. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, L.-T. Strengthened relationships of northwest China wintertime precipitation with ENSO and midlatitude North Atlantic SST since the mid-1990s. J. Clim. 2020, 33, 3967–3988. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, Y.; Pan, Y.; Li, W. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Hua, L.; Zhong, L.; Ma, Z. Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010. J. Geophys. Res. Atmos. 2017, 122, 12–522. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, A.; Zhou, Y.; Huang, D.; Yang, Q.; Ma, Y.; Li, M.; Wei, G. Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China. J. Clim. 2014, 27, 4721–4732. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Yang, S. Relationship between the Asian westerly jet stream and summer rainfall over central Asia and North China: Roles of the Indian monsoon and the South Asian high. J. Clim. 2017, 30, 537–552. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, A.; Zhao, Y.; Yang, Q.; Jiang, J.; La, M. Influence of the sea surface temperature anomaly over the Indian ocean in March on the summer rainfall in Xinjiang. Theor. Appl. Climatol. 2015, 119, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J. Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Shi, X.; Li, W.; Wang, H.; Zhang, S.; Fang, G. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos. Res. 2014, 138, 346–355. [Google Scholar] [CrossRef]
- Cai, Y.; Song, M.; Qian, Z.; Tongwen, W.U.; Luan, C. Reanalyses of precipitation circulation and vapor transportation of severe dry and wet events in summer in arid region of northwest China. Plateau Meteorol. 2015, 34, 597–610. [Google Scholar]
- Chen, D.D.; Dai, Y.J. Characteristics and analysis of typical anomalous summer rainfall patterns in northwest China over the last 50 years. Chin. J. Atmos. Sci. 2009, 33, 1247–1258. [Google Scholar]
- Yao, J.; Chen, Y.; Yang, Q. Spatial and temporal variability of water vapor pressure in the arid region of northwest China, during 1961–2011. Theor. Appl. Climatol. 2016, 123, 683–691. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, X.; Zhang, S.; Wang, C.; Zhang, X. Decadal variability of extreme precipitation days over northwest China from 1963 to 2012. J. Meteorol. Res. 2014, 28, 1099–1113. [Google Scholar] [CrossRef]
- Zhou, L.T.; Huang, R.H. Interdecadal variability of summer rainfall in northwest China and its possible causes. Int. J. Climatol. 2010, 30, 549–557. [Google Scholar] [CrossRef]
- Leung, M.Y.; Zhou, W. Circumglobal teleconnection and eddy control of variation in summer precipitation over northwest China. Clim. Dyn. 2018, 51, 1351–1362. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, J.; Ma, Y.; Game, A.T.; Chen, Z.; Chang, Y.; Liu, M. How do multiscale interactions affect extreme precipitation in eastern Central Asia? J. Clim. 2021, 34, 7475–7491. [Google Scholar] [CrossRef]
- Wu, J.; GAO, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Xie, P.; Chen, M.; Yang, S.; Yatagai, A.; Hayasaka, T.; Fukushima, Y.; Liu, C. A gauge-based analysis of daily precipitation over East Asia. J. Hydrol. Meteorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.-S.; Akbari Asanjan, A.; Hsu, K.-l.; Sorooshian, S. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmos. Res. 2017, 193, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.; Folland, C.K.; Alexander, L.V.; Rowell, D.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Demšar, U.; Harris, P.; Brunsdon, C.; Fotheringham, A.S.; McLoone, S. Principal component analysis on spatial data: An overview. Ann. Assoc. Am. Geogr. 2013, 103, 106–128. [Google Scholar] [CrossRef]
- Huang, G.; Qu, X.; Hu, K. The impact of the tropical Indian ocean on South Asian high in boreal summer. Adv. Atmos. Sci. 2011, 28, 421–432. [Google Scholar] [CrossRef]
- Sui, C.H.; Chung, P.; Li, T. Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Clim. 1991, 4, 707–722. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Y.; Li, Y.; Li, Z.; Duan, W.; Zhang, Q.; Chuan, W. Incorporating relative humidity improves the accuracy of precipitation phase discrimination in High Mountain Asia. Atmos. Res. 2022, 271, 106094. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, L.T. Enhanced moisture transport associated with the interdecadal change in winter precipitation over northwest China. Int. J. Climatol. 2022, 42, 385–399. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Zhihong, J.; Jinhu, Y.; Qiang, Z. Influence study on spring Indian ocean SSTA to summer extreme precipitation events over the eastern part of northwest China. J. Tropical Meteorol. 2009, 25, 641–648. [Google Scholar]
- Zhu, Z.; Lu, R.; Yan, H.; Li, W.; Li, T.; He, J. Dynamic origin of the interannual variability of West China autumn rainfall. J. Clim. 2020, 33, 9643–9652. [Google Scholar] [CrossRef]
- Cha, D.H.; Jin, C.S.; Lee, D.K. Impact of local sea surface temperature anomaly over the western North Pacific on extreme East Asian summer monsoon. Clim. Dyn. 2014, 37, 1691–1705. [Google Scholar] [CrossRef]
- Ge, J.; You, Q.; Zhang, Y. Effect of Tibetan Plateau heating on summer extreme precipitation in eastern China. Atmos. Res. 2019, 218, 364–371. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, B. Circumglobal teleconnection in the northern hemisphere summer. J. Clim. 2005, 18, 3483–3505. [Google Scholar] [CrossRef]
Model Name | Modeling Center and Country | Spatial Resolution (lon × lat) |
---|---|---|
BCC-CSM2-MR | Beijing Climate Center, China Meteorological Administration (China) | 1.125° × 1.1° |
FGOALS-g3 | LASG, Institute of Atmospheric Physics, China Academy of Sciences and Center for Earth System Science, Tsinghua University (China) | 2.25° × 2° |
GFDL-CM4 | NOAA-Geophysical Fluid Dynamics Laboratory (USA) | 1.25° × 1° |
GFDL-ESM4 | NOAA-Geophysical Fluid Dynamics Laboratory (USA) | 1.25° × 1° |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology (Germany) | 0.9° × 0.9° |
MRI-ESM2-0 | Meteorological Research Institute (Japan) | 1.125° × 1.1° |
NESM3 | Nanjing University Information Science and Technology (China) | 1.875° × 1.9° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Li, Z.; Lei, H.; Chen, Z.; Liu, J.; Wang, S.; Su, T.; Feng, G. Interannual Variability of Extreme Precipitation during the Boreal Summer over Northwest China. Remote Sens. 2023, 15, 785. https://doi.org/10.3390/rs15030785
Ma Q, Li Z, Lei H, Chen Z, Liu J, Wang S, Su T, Feng G. Interannual Variability of Extreme Precipitation during the Boreal Summer over Northwest China. Remote Sensing. 2023; 15(3):785. https://doi.org/10.3390/rs15030785
Chicago/Turabian StyleMa, Qianrong, Zhongwai Li, Hongjia Lei, Zhiheng Chen, Jiang Liu, Shuting Wang, Tao Su, and Guolin Feng. 2023. "Interannual Variability of Extreme Precipitation during the Boreal Summer over Northwest China" Remote Sensing 15, no. 3: 785. https://doi.org/10.3390/rs15030785
APA StyleMa, Q., Li, Z., Lei, H., Chen, Z., Liu, J., Wang, S., Su, T., & Feng, G. (2023). Interannual Variability of Extreme Precipitation during the Boreal Summer over Northwest China. Remote Sensing, 15(3), 785. https://doi.org/10.3390/rs15030785