Dynamic Field Retrieval and Analysis of Structural Evolution in Offshore Core Area of Typhoon Higos Based on Ground-Based Radar Observation
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. The 3-D Variational Wind Field Retrieval Method
3.2. Validation of DDA Method for Retrieving Vertical Velocity
4. Results and Discussion
4.1. Analysis of Horizontal Wind
4.2. Analysis of Vertical Velocity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y. Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci. 2002, 59, 1239–1262. [Google Scholar] [CrossRef]
- Skwira, G.D.; Schroeder, J.L.; Peterson, R.E. Surface observations of landfalling hurricane rainbands. Mon. Weather Rev. 2005, 133, 454–465. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.-C. Current understanding of tropical cyclone structure and intensity changes-A review. Meteorol. Atmos. Phys. 2004, 87, 257–278. [Google Scholar] [CrossRef]
- Qiu, X.; Tan, Z.-M. The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci. 2013, 70, 953–974. [Google Scholar] [CrossRef]
- Marks, F.D.; Shay, L.K. Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc. 1998, 79, 305–323. [Google Scholar]
- Duan, Y. Monitoring and forecasting of finescale structure and impact assessment of landfalling typhoons. Adv. Earth Sci. 2015, 30, 847–854. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Marks, F.; Feinberg, R.J. Stationary and moving convective bands in hurricanes. J. Atmos. Sci. 1984, 41, 3189–3211. [Google Scholar] [CrossRef]
- Atlas, D.; Hardy, K.R.; Wexler, R.; Boucher, R. On the origin of hurricane spiral bands. Geofis. Int. 1963, 3, 123–132. [Google Scholar] [CrossRef]
- Barnes, G.M.; Zipser, E.J.; Jorgensen, D.; Marks, F., Jr. Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci. 1983, 40, 2125–2137. [Google Scholar] [CrossRef]
- Hence, D.A.; Houze, R.A., Jr. Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res. 2008, 113, D15108. [Google Scholar] [CrossRef] [Green Version]
- Willoughby, H.E. The dynamics of the tropical cyclone core. Aust. Meteorol. Mag. 1988, 36, 183–191. [Google Scholar]
- Houze, R.A., Jr. Clouds in Tropical Cyclones. Mon. Weather Rev. 2010, 138, 293–344. [Google Scholar] [CrossRef]
- Black, R.A.; Hallett, J. Observations of the distribution of ice in hurricanes. J. Atmos. Sci. 1986, 43, 802–822. [Google Scholar] [CrossRef]
- Molinari, J.; Moore, P.; Idone, V. Convective structure of hurricanes as revealed by lightning locations. Mon. Weather Rev. 1999, 127, 520–534. [Google Scholar] [CrossRef]
- Powell, M.D. Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Weather Rev. 1990, 118, 891–917. [Google Scholar] [CrossRef]
- Powell, M.D. Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Weather Rev. 1990, 118, 918–938. [Google Scholar] [CrossRef]
- Franklin, C.N.; Holland, G.J.; May, P.T. Mechanisms for the generation of mesoscale vorticity features in tropical cyclone rainbands. Mon. Weather Rev. 2006, 134, 2649–2669. [Google Scholar] [CrossRef]
- Didlake, A.C., Jr.; Houze, R.A., Jr. Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Weather Rev. 2009, 137, 3269–3293. [Google Scholar] [CrossRef] [Green Version]
- Didlake, A.C., Jr.; Houze, R.A., Jr. Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci. 2013, 70, 1891–1911. [Google Scholar] [CrossRef]
- Didlake, A.C., Jr.; Reasor, P.D.; Rorgers, R.F.; Lee, W.C. Dynamics of the Transition from Spiral Rainbands to a Secondary Eyewall in Hurricane Earl (2010). J. Atmos. Sci. 2018, 75, 2909–2929. [Google Scholar] [CrossRef]
- Cha, T.Y.; Bell, M.M.; Lee, W.C.; DesRosiers, A.J. Polygonal Eyewall Asymmetries During the Rapid Intensification of Hurricane Michael(2018). Geophys. Res. Lett. 2020, 47, e2020GL087919. [Google Scholar] [CrossRef]
- Lee, W.-C.; Jou, B.J.-D.; Chang, P.-L.; Deng, S.-M. Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique. Mon. Weather Rev. 1999, 127, 2419–2439. [Google Scholar] [CrossRef]
- Jou, B.J.-D.; Lee, W.-C.; Liu, S.-P.; Kao, Y.-C. Generalized VTD retrieval of atmospheric vortex kinematic structure. Part I: Formulation and error analysis. Mon. Weather Rev. 2008, 136, 995–1012. [Google Scholar] [CrossRef]
- Cha, T.Y.; Bell, M.M. Comparison of Single Doppler and Multiple Doppler Wind Retrievals in Hurricane Matthew (2016). Atmos. Meas. Tech. 2021, 14, 3523–3539. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, M.; Zhang, P.; Xu, H.; Zhao, C. The precipitation particles’vertical velocity retrieval with single Doppler weather radar. Part I: Retrieval method’s analysis. Acta Meteorol. Sin. 2014, 72, 760–771. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, M.; Zhang, P.; Xu, H.; Zhang, M. The precipitation particles’vertical velocity retrieval with single Doppler weather radar. Part II: Case analysis. Acta Meteorol. Sin. 2014, 72, 772–781. [Google Scholar] [CrossRef]
- Black, M.L.; Gamache, J.F.; Marks, F.D.; Samsury, C.E.; Willoughby, H.E. Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Weather Rev. 2002, 130, 2291–2312. [Google Scholar] [CrossRef]
- Reasor, P.D.; Rogers, R.; Lorsolo, S. Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Weather Rev. 2013, 141, 2949–2969. [Google Scholar] [CrossRef]
- DeHart, J.C.; Houze, R.A.; Rogers, R.F. Quadrant distribution of tropical cyclone inner-core Kinematics in relation to environmental shear. J. Atmos. Sci. 2014, 71, 2713–2732. [Google Scholar] [CrossRef]
- Potvin, C.K.; Betten, D.; Wicker, L.J.; Elmore, K.L.; Biggerstaff, M.I. 3DVAR versus traditional dual-Doppler wind retrievals of a simulated supercell thunderstorm. Mon. Weather Rev. 2012, 140, 3487–3494. [Google Scholar] [CrossRef]
- Potvin, C.K.; Wicker, L.J.; Shapiro, A. Assessing errors in variational dual-Doppler wind syntheses of supercell thunderstorms observed by storm-scale mobile radars. J. Atmos. Ocean. Technol. 2012, 29, 1009–1025. [Google Scholar] [CrossRef]
- Oue, M.; Kollias, P.; Sharpiro, A.; Tatarevic, A.; Matsui, T. Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals. Atmos. Meas. Tech. 2019, 12, 1999–2018. [Google Scholar] [CrossRef] [Green Version]
- Tatarevic, A.; Kollias, P.; Oue, M.; Wang, D.; Yu, K. User’s Guide CR-SIM SOFTWARE v 3.1, Brookhaven National Laboratory–Stony Brook University McGill University Radar Science Group. Available online: https://you.stonybrook.edu/radar/research/radar-simulators/ (accessed on 19 June 2020).
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Lee, J.D.; Wu, C.C. The role of polygonal eyewalls in rapid intensification of typhoon Megi (2010). J. Atmos. Sci. 2018, 75, 4175–4199. [Google Scholar] [CrossRef]
- Qin, N.N.; Zhang, D.L.; Miller, W.; Kieu, C.Q. On the rapid intensification of Hurricane Wilma (2005). Part IV: Inner-core dynamics during the steady radius of maximum wind stage. Quart. J. Roy. Meteor. Soc. 2018, 144, 2508–2523. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.Y.; Ping, F.; Shen, X.Y.; Liu, L.K. A comparative study of effects of different microphysics schemes on precipitation simulation for typhoon Mujigae (2015). Chinese J. Atmos. Sci. 2019, 43, 202–220. [Google Scholar] [CrossRef]
- Zhang, P.; He, P.; Song, C.; Ge, R. A study on error distribution and radar optimum arrangements of wind field measurement with Doppler radars. Acta Meteorol. Sin. 1998, 1, 96–103. [Google Scholar] [CrossRef]
Station (Code NO.) | Radial Velocity Elevation Angle and Detection Range | Wavelength/ Frequency | PRFs | Nyquist Velocity |
---|---|---|---|---|
Tate’s Cairn, Hong Kong (45010) | 0.1°0.9°1.8°2.7°3.6°5.4°(256 km) | 2.845 G | 585 Hz | 45.0 m/s |
9.9°15.0°22.0°34.0°(150 km) | 999 Hz | 51.6 m/s | ||
Zhuhai-Macao (ZAR) | 0.1°0.5°1.5°2.4°3.4°4.3°6.0°(230 km) | 2.765 G | 650 Hz | 33.6 m/s |
9.9°15.0°22.0°34.0°(150 km) | 999 Hz | 51.6 m/s | ||
Shenzhen (Z9755) | 0.5°1.5°2.4°3.3°4.3° (150 km) | 2.765 G | 1014 Hz | 27.7 m/s |
6.0°9.9°14.6°19.5° (150 km) | 1282 Hz | 32.3 m/s |
Domain | D01 | D02 |
---|---|---|
Horizontal grid number | 180 × 153 | 520 × 356 |
Grid spacing (km) | 12 | 3 |
Integration time (h) | 12 | 12 |
Cumulus parameterization | Kain-Fritsch Scheme | |
Microphysics | Single-moment 6-class | |
Planetary boundary layer | Yonsei University scheme | |
Radiation Scheme | Rapid and Accurate Radiative Transfer Model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Lu, Q.; Wei, M.; Wu, L.; Li, R.; Wang, S.; Liu, H. Dynamic Field Retrieval and Analysis of Structural Evolution in Offshore Core Area of Typhoon Higos Based on Ground-Based Radar Observation. Remote Sens. 2023, 15, 809. https://doi.org/10.3390/rs15030809
Li R, Lu Q, Wei M, Wu L, Li R, Wang S, Liu H. Dynamic Field Retrieval and Analysis of Structural Evolution in Offshore Core Area of Typhoon Higos Based on Ground-Based Radar Observation. Remote Sensing. 2023; 15(3):809. https://doi.org/10.3390/rs15030809
Chicago/Turabian StyleLi, Ruiyi, Qifeng Lu, Ming Wei, Lei Wu, Ruifeng Li, Shudong Wang, and Hua Liu. 2023. "Dynamic Field Retrieval and Analysis of Structural Evolution in Offshore Core Area of Typhoon Higos Based on Ground-Based Radar Observation" Remote Sensing 15, no. 3: 809. https://doi.org/10.3390/rs15030809
APA StyleLi, R., Lu, Q., Wei, M., Wu, L., Li, R., Wang, S., & Liu, H. (2023). Dynamic Field Retrieval and Analysis of Structural Evolution in Offshore Core Area of Typhoon Higos Based on Ground-Based Radar Observation. Remote Sensing, 15(3), 809. https://doi.org/10.3390/rs15030809