Prediction of Significant Wave Heights with Engineered Features from GNSS Reflectometry
Abstract
:1. Introduction
2. Methodology
2.1. Introductory Remarks
2.2. Estimation of Reflector Height
- 1.
- A Nadaraya–Watson kernel regression [21] with a Gaussian kernel function (4) is performed for the scattered data, as exemplified in Figure 3 and Figure 4. The regression function as expectation value of the SNR conditional on reads as follows:Here, denotes the bandwidth of the kernel function.
- 2.
- Local extrema in the kernel regression are determined by numerically detecting changes of the sign of the derivative of the kernel regression function (3). To this end, the derivative is calculated analytically and is evaluated on an equidistant grid on the horizontal axis. If a change of the sign of the derivative is detected for two consecutive gridpoints, the abscissa value of a local extremum is set as the average value of these two gridpoints. Let be the strictly increasing sequence of these abscissa values of the local extrema.
- 3.
- A mean shift clustering [22,23] is applied to the set
- 4.
- Averaging over the cluster yields the estimate for the right-hand side of (2). Then, the reflector height h can be calculated from (2), as stated in Equation (6).
2.3. Reliability Label for Estimated Reflector Height
2.4. Engineering of Features for Prediction of Significant Wave Heights
2.5. Additional Predictors from Inverse Modeling
2.6. Models for Prediction of the Significant Wave Height
2.6.1. Introductory Notes
2.6.2. Linear Model
2.6.3. Neural Network
2.6.4. Bagged Regression Tree
3. Sensors, Data Sets, and Preprocessing
4. Analysis and Results
5. Summary, Concluding Remarks, and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCP | Acoustic Doppler Current Profiler |
ANN | Artificial Neural Network |
BaggedRT | Bagged Regression Tree |
BMWK | Bundesministerium für Wirtschaft und Klimaschutz |
BSH | Bundesamt für Seeschifffahrt und Hydrographie |
CODE | Center for Orbit Determination in Europe |
FINO | Forschung in Nord- und Ostsee |
GNSS | Global Navigation Satellite System |
GNSS-R | GNSS Reflectometry |
GPS | Global Positioning System |
IGS | International GNSS Service |
IR | Interferometric Reflectometry |
LinReg | Linear Regression |
ME | Mean Error |
MJD | Modified Julian Date |
MSE | Mean Squared Error |
PTJ | Projektträger Jülich |
RINEX | Receiver Independent Exchange Format |
RMSE | Root Mean Square Error |
SNR | Signal-to-Noise Ratio |
SWH | Significant Wave Height |
References
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Larson, K.M.; Lay, T.; Yamazaki, Y.; Cheung, K.F.; Ye, L.; Williams, S.D.P.; Davis, J.L. Dynamic Sea Level Variation from GNSS: 2020 Shumagin Earthquake Tsunami Resonance and Hurricane Laura. Geophys. Res. Lett. 2020, 48, e2020GL09137. [Google Scholar] [CrossRef]
- Peng, D.; Feng, L.; Larson, K.M.; Hill, E.M. Measuring Coastal Absolute Sea-Level Changes Using GNSS Interferometric Reflectometry. Remote Sens. 2021, 13, 4319. [Google Scholar] [CrossRef]
- Reinking, J.; Roggenbuck, O.; Even-Tzur, G. Estimating Wave Direction Using Terrestrial GNSS Reflectometry. Remote Sens. 2019, 11, 1027. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Arroyo, A.; Camps, A.; Park, H.; Pascual, D.; Onrubia, R.; Martín, F. Retrieval of Significant Wave Height and Mean Sea Surface Level Using the GNSS-R Interference Pattern Technique: Results From a Three-Month Field Campaign. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3198–3209. [Google Scholar] [CrossRef] [Green Version]
- Roggenbuck, O.; Reinking, J.; Lambertus, T. Determination of Significant Wave Heights Using Damping Coefficients of Attenuated GNSS SNR Data from Static and Kinematic Observations. Remote Sens. 2019, 11, 409. [Google Scholar] [CrossRef] [Green Version]
- Holthuisen, L. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Soulat, F.; Caparrini, M.; Germain, O.; Lopez-Dekker, P.; Taani, M.; Ruffini, G. Sea state monitoring using coastal GNSS-R. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Löfgren, J.; Haas, R. Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP J. Adv. Signal Process. 2014, 2014, 50 , 1–13. [Google Scholar] [CrossRef] [Green Version]
- Roggenbuck, O.; Reinking, J. Sea Surface Heights Retrieval from Ship-Based Measurements Assisted by GNSS Signal Reflections. Mar. Geod. 2019, 42, 1–24. [Google Scholar] [CrossRef]
- Wang, F.; Yang, D.; Yang, L. Retrieval and Assessment of Significant Wave Height from CYGNSS Mission Using Neural Network. Remote Sens. 2022, 14, 3666. [Google Scholar] [CrossRef]
- Bué, I.; Semedo, A.; Catalão, J. Evaluation of HF Radar Wave Measurements in Iberian Peninsula by Comparison with Satellite Altimetry and in Situ Wave Buoy Observations. Remote Sens. 2020, 12, 3623. [Google Scholar] [CrossRef]
- Ludeno, G.; Serafino, F. Estimation of the Significant Wave Height from Marine Radar Images without External Reference. J. Mar. Sci. Eng. 2019, 7, 432. [Google Scholar] [CrossRef] [Green Version]
- Passaro, M.; Fenoglio-Marc, L.; Cipollini, P. Validation of Significant Wave Height From Improved Satellite Altimetry in the German Bight. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2146–2156. [Google Scholar] [CrossRef]
- Bayindir, C.; Frost, J.; Barnes, C. Assessment and Enhancement of SAR Noncoherent Change Detection of Sea-Surface Oil Spills. IEEE J. Ocean. Eng. 2018, 43, 211–220. [Google Scholar] [CrossRef]
- Becker, J.; Roggenbuck, O. Sea level monitoring with GNSS reflectometry based on non-parametric modelling. In Proceedings of the 1st Workshop on Data Science for GNSS Remote Sensing, Potsdam, Germany, 13–15 June 2022. [Google Scholar]
- Braasch, M. Multipath. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, P., Montenbruck, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer series in statistics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press Elsevier: Oxford, UK, 2011. [Google Scholar]
- Thompson, D. Microwave Scattering from the Sea. In Synthetic Aperture Radar Marine User’s Manual; Jackson, C., Apel, J., Eds.; U.S. Department of Commerce, National Oceanic and Atmospheric Administration: Washington, DC, USA, 2004. [Google Scholar]
- Watson, G.S. Smooth Regression Analysis. Sankhyā Indian J. Stat. Ser. A 1964, 26, 359–372. [Google Scholar]
- Mean Shift Clustering Using a Flat Kernel; Scikit-Learn Machine Learning Library for Python. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html (accessed on 6 December 2022).
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Ordinary Least Squares Linear Regression; Scikit-Learn Machine Learning Library for Python. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html (accessed on 6 December 2022).
- Multi-Layer Perceptron Regressor; Scikit-Learn Machine Learning Library for Python. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html (accessed on 6 December 2022).
- A Random Forest Regressor; Scikit-Learn Machine Learning Library for Python. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html (accessed on 6 December 2022).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980v8. [Google Scholar] [CrossRef]
- Hinton, G.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yao, J.; Hu, J.; Zhao, Y.; Li, S.; Hu, J. Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Sensors 2019, 19, 2229. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.; Wang, F. The performance of using an autoencoder for prediction and susceptibility assessment of landslides: A case study on landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake in Japan. Geoenviron. Disasters 2019, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Dach, R.; Schaer, S.; Arnold, D.; Kalarus, M.S.; Prange, L.; Stebler, P.; Villiger, A.; Jäggi, A. CODE Final Product Series for the IGS; Astronomical Institute, University of Bern: Bern, Switzerland, 2020; Available online: http://www.aiub.unibe.ch/download/CODE (accessed on 29 June 2022).
- Bennett, G.G. The Calculation of Astronomical Refraction in Marine Navigation. J. Navig. 1982, 35, 255–259. [Google Scholar] [CrossRef]
- Reflectometry Preprocessing Tool. Available online: https://github.com/kristinemlarson/gnssrefl (accessed on 30 May 2022).
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill Irwin: New York, NY, USA, 2005. [Google Scholar]
- Glahn, H.R.; Lowry, D.A. The Use of Model Output Statistics (MOS) in Objective Weather Forecasting. J. Appl. Meteorol. Climatol. 1972, 11, 1203–1211. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kober, K.; Craig, G.C.; Keil, C.; Dörnbrack, A. Blending a probabilistic nowcasting method with a high-resolution numerical weather prediction ensemble for convective precipitation forecasts. Q. J. R. Meteorol. Soc. 2012, 138, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Medvedev, I.P.; Rabinovich, A.B.; Kulikov, E.A. Tides in Three Enclosed Basins: The Baltic, Black, and Caspian Seas. Front. Mar. Sci. 2016, 3, 46. [Google Scholar] [CrossRef] [Green Version]
Predictor Setting | Explanation |
---|---|
a | Features only based on kernel regression, clustering; see Equations (15) and (16). |
b | Features based on kernel regression, clustering, as well as damping coefficients; see Equations (21) and (22). |
c | Features only based on damping coefficients; see Equation (23). |
Model Type Abbreviation | Explanation |
---|---|
ANN | Artificial Neural Network |
LinReg | Linear Regression |
BaggedRT | Bagged Regression Tree |
Dataset | Periods Used | Regression Cases |
---|---|---|
training | January 2021–May 2021 | 4914 |
testing | November 2020, August 2021, September 2021 | 3402 |
Model Type | Predictor Setting | RMSE | Confidence Interval |
---|---|---|---|
LinReg | 1c | 0.246 m | (0.212 m, 0.275 m) |
LinReg | 29a | 0.199 m | (0.176 m, 0.218 m) |
LinReg | 5c | 0.195 m | (0.162 m, 0.223 m) |
ANN | 27a | 0.195 m | (0.173 m, 0.213 m) |
LinReg | 26b | 0.184 m | (0.155 m, 0.212 m) |
ANN | 4c | 0.179 m | (0.151 m, 0.204 m) |
ANN | 31b | 0.167 m | (0.147 m, 0.185 m) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, J.M.; Roggenbuck, O. Prediction of Significant Wave Heights with Engineered Features from GNSS Reflectometry. Remote Sens. 2023, 15, 822. https://doi.org/10.3390/rs15030822
Becker JM, Roggenbuck O. Prediction of Significant Wave Heights with Engineered Features from GNSS Reflectometry. Remote Sensing. 2023; 15(3):822. https://doi.org/10.3390/rs15030822
Chicago/Turabian StyleBecker, Jan M., and Ole Roggenbuck. 2023. "Prediction of Significant Wave Heights with Engineered Features from GNSS Reflectometry" Remote Sensing 15, no. 3: 822. https://doi.org/10.3390/rs15030822
APA StyleBecker, J. M., & Roggenbuck, O. (2023). Prediction of Significant Wave Heights with Engineered Features from GNSS Reflectometry. Remote Sensing, 15(3), 822. https://doi.org/10.3390/rs15030822