Vegetation Fuel Mapping at Regional Scale Using Sentinel-1, Sentinel-2, and DEM Derivatives—The Case of the Region of East Macedonia and Thrace, Greece
Abstract
:1. Introduction
1.1. Fuel Type Maps for Wildfire Risk Assessment
1.2. Fuel Type Mapping through Remote Sensing
2. Materials and Methods
2.1. Study Area
2.2. Methodological Analysis Outline
2.3. Fuel Type Sampling
2.4. Remote Sensing Data and Preprocessing
2.5. Classification Models
- Spectral indices model (SP) using the 10 spectral indices;
- Spectral indices and topographic variables model (SPT) using 13 variables;
- Spectral indices, topographic, and backscatter information (SPTS) model using 16 variables.
2.6. Accuracy Assessment
2.7. Variable Importance
3. Results
3.1. Forest Fuel Type Classification
3.1.1. Spectral Indices Model
3.1.2. Spectral Indices and Topographic Variables Model
3.1.3. Spectral Indices, Topography, and Backscattering Information Model (SPTS)
3.2. Visual Inspection
3.3. Variable Importance
4. Discussion
4.1. Fuel Type Classification Model’s Comparison
4.2. Variable Importance
4.3. Limitations and Further Research Perspectives
5. Conclusions
- The SPTS model yielded the highest overall accuracy (OA) of 92.76%, followed by SPT (OA = 91.92%) and SP (OA = 81.39%);
- The Sentinel-2 spectral indices produce accurate maps of forest fuel types;
- Topographic variables enhance model performance;
- Sentinel-1 data have a positive influence on the accuracy of forest fuel type classification;
- Variable importance measures highlighted the importance of the digital elevation model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammability as an Ecological and Evolutionary Driver. J. Ecol. 2017, 105, 289–297. [Google Scholar] [CrossRef]
- Turco, M.; Bedia, J.; Di Liberto, F.; Fiorucci, P.; von Hardenberg, J.; Koutsias, N.; Llasat, M.-C.; Xystrakis, F.; Provenzale, A. Decreasing Fires in Mediterranean Europe. PLoS ONE 2016, 11, e0150663. [Google Scholar] [CrossRef]
- Jones, G.M.; Tingley, M.W. Pyrodiversity and Biodiversity: A History, Synthesis, and Outlook. Divers. Distrib. 2022, 28, 386–403. [Google Scholar] [CrossRef]
- Christopoulou, A.; Mallinis, G.; Vassilakis, E.; Farangitakis, G.-P.; Fyllas, N.M.; Kokkoris, G.D.; Arianoutsou, M. Assessing the Impact of Different Landscape Features on Post-Fire Forest Recovery with Multitemporal Remote Sensing Data: The Case of Mount Taygetos (Southern Greece). Int. J. Wildl. Fire 2019, 28, 521. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. A Burning Story: The Role of Fire in the History of Life. Bioscience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Taboada, A.; García-Llamas, P.; Fernández-Guisuraga, J.M.; Calvo, L. Wildfires Impact on Ecosystem Service Delivery in Fire-Prone Maritime Pine-Dominated Forests. Ecosyst. Serv. 2021, 50, 101334. [Google Scholar] [CrossRef]
- Moore, P.F. Global Wildland Fire Management Research Needs. Curr. For. Rep. 2019, 5, 210–225. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertá, G.; Artés-Vivancos, T.; Oom, D.; Branco, A.; de Rigo, D.; Ferrari, D.; et al. Forest Fires in Europe, Middle East and North Africa 2021; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Rodrigues, M.; Cunill Camprubí, À.; Balaguer-Romano, R.; Coco Megía, C.J.; Castañares, F.; Ruffault, J.; Fernandes, P.M.; Resco de Dios, V. Drivers and Implications of the Extreme 2022 Wildfire Season in Southwest Europe. Sci. Total Environ. 2023, 859, 160320. [Google Scholar] [CrossRef]
- Hanan, E.J.; Ren, J.; Tague, C.L.; Kolden, C.A.; Abatzoglou, J.T.; Bart, R.R.; Kennedy, M.C.; Liu, M.; Adam, J.C. How Climate Change and Fire Exclusion Drive Wildfire Regimes at Actionable Scales. Environ. Res. Lett. 2021, 16, 24051. [Google Scholar] [CrossRef]
- Oom, D.; de Rigo, D.; Pfeiffer, H.; Branco, A.; Ferrari, D.; Grecchi, R.; Artés-Vivancos, T.; Houston Durrant, T.; Boca, R.; Maianti, P.; et al. Pan-European Wildfire Risk Assessment, EUR 31160 EN; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- National Wildfire Coordinating Group Incident Response Pocket Guide; National Wildfire Coordinating Group, Operations and Training Committee, NWCG PMS: Missoula, MT, USA, 2018; p. 138.
- Mallinis, G.; Mitsopoulos, I.D.; Dimitrakopoulos, A.P.; Gitas, I.Z.; Karteris, M. Local-Scale Fuel-Type Mapping and Fire Behavior Prediction by Employing High-Resolution Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 230–239. [Google Scholar] [CrossRef]
- Keane, R.E.; Burgan, R.; Van Wagtendonk, J. Mapping Wildland Fuels for Fire Management across Multiple Scales: Integrating Remote Sensing, GIS, and Biophysical Modeling. Int. J. Wildl. Fire 2001, 10, 301. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire Models and Methods to Map Fuel Types: The Role of Remote Sensing. For. Ecol. Manag. 2008, 256, 1239–1252. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Fire Danger Observed from Space. Surv. Geophys. 2020, 41, 1437–1459. [Google Scholar] [CrossRef]
- Mallinis, G.; Galidaki, G.; Gitas, I. A Comparative Analysis of EO-1 Hyperion, Quickbird and Landsat TM Imagery for Fuel Type Mapping of a Typical Mediterranean Landscape. Remote Sens. 2014, 6, 1684–1704. [Google Scholar] [CrossRef]
- Gale, M.G.; Cary, G.J.; Van Dijk, A.I.J.M.; Yebra, M. Forest Fire Fuel through the Lens of Remote Sensing: Review of Approaches, Challenges and Future Directions in the Remote Sensing of Biotic Determinants of Fire Behaviour. Remote Sens. Environ. 2021, 255, 112282. [Google Scholar] [CrossRef]
- Domingo, D.; de la Riva, J.; Lamelas, M.; García-Martín, A.; Ibarra, P.; Echeverría, M.; Hoffrén, R. Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2 Data in Mediterranean Forest Affected by Wildfires. Remote Sens. 2020, 12, 3660. [Google Scholar] [CrossRef]
- Huesca, M.; Riaño, D.; Ustin, S.L. Spectral Mapping Methods Applied to LiDAR Data: Application to Fuel Type Mapping. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 159–168. [Google Scholar] [CrossRef]
- García, M.; Popescu, S.; Riaño, D.; Zhao, K.; Neuenschwander, A.; Agca, M.; Chuvieco, E. Characterization of Canopy Fuels Using ICESat/GLAS Data. Remote Sens. Environ. 2012, 123, 81–89. [Google Scholar] [CrossRef]
- de Souza Mendes, F.; Baron, D.; Gerold, G.; Liesenberg, V.; Erasmi, S. Optical and SAR Remote Sensing Synergism for Mapping Vegetation Types in the Endangered Cerrado/Amazon Ecotone of Nova Mutum-Mato Grosso. Remote Sens. 2019, 11, 1161. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Quan, X.; He, B.; Yebra, M.; Xing, M.; Liu, X. Assessment of the Dual Polarimetric Sentinel-1A Data for Forest Fuel Moisture Content Estimation. Remote Sens. 2019, 11, 1568. [Google Scholar] [CrossRef]
- Fan, L.; Wigneron, J.P.; Xiao, Q.; Al-Yaari, A.; Wen, J.; Martin-StPaul, N.; Dupuy, J.L.; Pimont, F.; Al Bitar, A.; Fernandez-Moran, R.; et al. Evaluation of Microwave Remote Sensing for Monitoring Live Fuel Moisture Content in the Mediterranean Region. Remote Sens. Environ. 2018, 205, 210–223. [Google Scholar] [CrossRef]
- Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L. Estimation of Forest Fuel Load from Radar Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1726–1740. [Google Scholar] [CrossRef]
- D’este, M.; Elia, M.; Giannico, V.; Spano, G.; Lafortezza, R.; Sanesi, G. Machine Learning Techniques for Fine Dead Fuel Load Estimation Using Multi-source Remote Sensing Data. Remote Sens. 2021, 13, 1658. [Google Scholar] [CrossRef]
- Chhabra, A.; Rüdiger, C.; Yebra, M.; Jagdhuber, T.; Hilton, J. RADAR-Vegetation Structural Perpendicular Index (R-VSPI) for the Quantification of Wildfire Impact and Post-Fire Vegetation Recovery. Remote Sens. 2022, 14, 3132. [Google Scholar] [CrossRef]
- Udali, A.; Lingua, E.; Persson, H.J. Assessing Forest Type and Tree Species Classification Using Sentinel-1 C-Band SAR Data in Southern Sweden. Remote Sens. 2021, 13, 3237. [Google Scholar] [CrossRef]
- Tello, M.; Cazcarra-Bes, V.; Pardini, M.; Papathanassiou, K. Forest Structure Characterization from SAR Tomography at L-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3402–3414. [Google Scholar] [CrossRef]
- de Jesus, J.B.; Kuplich, T.M. Applications of Sar Data to Estimate Forest Biophysical Variables in Brazil. Cerne 2020, 26, 88–97. [Google Scholar] [CrossRef]
- José Vidal-Macua, J.; Ninyerola, M.; Zabala, A.; Domingo-Marimon, C.; Pons, X. Factors Affecting Forest Dynamics in the Iberian Peninsula from 1987 to 2012. The Role of Topography and Drought. For. Ecol. Manag. 2017, 406, 290–306. [Google Scholar] [CrossRef]
- Verde, N.; Kokkoris, I.P.; Georgiadis, C.; Kaimaris, D.; Dimopoulos, P.; Mitsopoulos, I.; Mallinis, G. National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine. Remote Sens. 2020, 12, 3303. [Google Scholar] [CrossRef]
- Pfeffer, K.; Pebesma, E.J.; Burrough, P.A. Mapping Alpine Vegetation Using Vegetation Observations and Topographic Attributes. Landsc. Ecol. 2003, 18, 759–776. [Google Scholar] [CrossRef]
- Chirici, G.; Scotti, R.; Montaghi, A.; Barbati, A.; Cartisano, R.; Lopez, G.; Marchetti, M.; Mcroberts, R.E.; Olsson, H.; Corona, P. Stochastic Gradient Boosting Classification Trees for Forest Fuel Types Mapping through Airborne Laser Scanning and IRS LISS-III Imagery. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 87–97. [Google Scholar] [CrossRef]
- García, M.; Riaño, D.; Chuvieco, E.; Salas, J.; Danson, F.M. Multispectral and LiDAR Data Fusion for Fuel Type Mapping Using Support Vector Machine and Decision Rules. Remote Sens. Environ. 2011, 115, 1369–1379. [Google Scholar] [CrossRef]
- Ruiz, L.Á.; Recio, J.A.; Crespo-Peremarch, P.; Sapena, M. An Object-Based Approach for Mapping Forest Structural Types Based on Low-Density LiDAR and Multispectral Imagery. Geocarto Int. 2018, 33, 443–457. [Google Scholar] [CrossRef]
- Dobrinić, D.; Gašparović, M.; Medak, D. Sentinel-1 and 2 Time-Series for Vegetation Mapping Using Random Forest Classification: A Case Study of Northern Croatia. Remote Sens. 2021, 13, 2321. [Google Scholar] [CrossRef]
- Li, Y.; Quan, X.; Liao, Z.; He, B. Forest Fuel Loads Estimation from Landsat Etm+ and Alos Palsar Data. Remote Sens. 2021, 13, 1189. [Google Scholar] [CrossRef]
- Aragoneses, E.; Chuvieco, E. Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire 2021, 4, 59. [Google Scholar] [CrossRef]
- Rego, F.; Rodrigues, J.; Caldaza, V.; Xanthopoulos, G. Forest Fires: Sparking Firesmart Policies in the EU. In Research & Innovation Projects for Policy; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Marino, E.; Ranz, P.; Tomé, J.L.; Noriega, M.Á.; Esteban, J.; Madrigal, J. Generation of High-Resolution Fuel Model Maps from Discrete Airborne Laser Scanner and Landsat-8 OLI: A Low-Cost and Highly Updated Methodology for Large Areas. Remote Sens. Environ. 2016, 187, 267–280. [Google Scholar] [CrossRef]
- Pyne, J.S. Introduction to Wildland Fire: Fire Management in the United States; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- McKenzie, D.; Raymond, C.L.; Kellogg, L.-K.B.; Norheim, R.A.; Andreu, A.G.; Bayard, A.C.; Kopper, K.E.; Elman, E. Mapping Fuels at Multiple Scales: Landscape Application of the Fuel Characteristic Classification System. Can. J. For. Res. 2007, 37, 2421–2437. [Google Scholar] [CrossRef]
- Keane, R.E.; Herynk, J.M.; Toney, C.; Urbanski, S.P.; Lutes, D.C.; Ottmar, R.D. Evaluating the Performance and Mapping of Three Fuel Classification Systems Using Forest Inventory and Analysis Surface Fuel Measurements. For. Ecol. Manag. 2013, 305, 248–263. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Mavrommatis, G. The Bioclimate of Greece, Relationships between Climate and Natural Vegetation, Bioclimatic Maps. In Dasiki Erevna, Vol. 1, Appendix; Scientific Research Publishing: Athens, Greece, 1980. (In Greek) [Google Scholar]
- Athanasiadis, N. Forest Phytosociology; Giahoudis-Giapoulis: Thessaloniki, Greece, 1986. (In Greek) [Google Scholar]
- Dafis, S. Classification of the Forest Vegetation of Greece; Faculty of Agriculture Forestry, Aristotle University of Thessaloniki: Thessaloniki, Greece, 1973. (In Greek) [Google Scholar]
- Brown, J.K.; Oberheu, R.D.; Johnston, C.M. Handbook for Inventorying Surface Fuels and Biomass in the Interior West; Gen. Tech. Rep. INT-129; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experimental Station: Ogden, UT, USA, 1982; p. 48. [Google Scholar]
- Stefanidou, A.; Gitas, I.Z.; Katagis, T. A National Fuel Type Mapping Method Improvement Using Sentinel-2 Satellite Data. Geocarto Int. 2020, 37, 1022–1042. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the Swir Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFCT Type II Report; Goddard Space Flight Center: Greenbelt, MD, USA, 1973; p. 86. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS- MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Barati, S.; Rayegani, B.; Saati, M.; Sharifi, A.; Nasri, M. Comparison the Accuracies of Different Spectral Indices for Estimation of Vegetation Cover Fraction in Sparse Vegetated Areas. Egypt. J. Remote Sens. Sp. Sci. 2011, 14, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High Density Biomass Estimation for Wetland Vegetation Using Worldview-2 Imagery and Random Forest Regression Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Ng, W.-T.; Rima, P.; Einzmann, K.; Immitzer, M.; Atzberger, C.; Eckert, S. Assessing the Potential of Sentinel-2 and Pléiades Data for the Detection of Prosopis and Vachellia Spp. in Kenya. Remote Sens. 2017, 9, 74. [Google Scholar] [CrossRef]
- Haboudane, D. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Feng, W.; Wu, Y.; He, L.; Ren, X.; Wang, Y.; Hou, G.; Wang, Y.; Liu, W.; Guo, T. An Optimized Non-Linear Vegetation Index for Estimating Leaf Area Index in Winter Wheat. Precis. Agric. 2019, 20, 1157–1176. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L.; Yang, B.; Xu, Z.; Wang, G. Estimation of Forest Structural Attributes Using Spectral Indices and Point Clouds from UAS-Based Multispectral and RGB Imageries. Remote Sens. 2019, 11, 800. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.; Gorelick, N.; Reiche, J. Sentinel-1 Sar Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- García, J.C.; Antonio, J.; Garzón, A. EU-DEM Upgrade Documentation EEA User Manual; Indra Systems S.A.: Madrid, Spain, 2015. [Google Scholar]
- Breiman, L. Random Forests. In Machine Learning; Springer: Berlin/Heidelberg, Germany, 2001; pp. 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R news 2002, 2, 18–22. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- R Development Core Team, R. A Language and Environment for Statistical Computing. R Found. Stat. Comput. 2014, 1, 409. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Cohen, J. Weighted Kappa: Nominal Scale Agreement Provision for Scaled Disagreement or Partial Credit. Psychol. Bull. 1968, 70, 213–220. [Google Scholar] [CrossRef]
- Evans, J.S.; Murphy, M.A. rfUtilities. R package version 2.1-4. 2018. Available online: https://cran.r-project.org/package=rfUtilities (accessed on 9 February 2023).
- Warrens, M.J. Cohen’s Weighted Kappa with Additive Weights. Adv. Data Anal. Classif. 2013, 7, 41–55. [Google Scholar] [CrossRef]
- McNemar, Q. Note on the Sampling Error of the Difference between Correlated Proportions or Percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic Map Comparison. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Han, H.; Guo, X.; Yu, H. Variable Selection Using Mean Decrease Accuracy and Mean Decrease Gini Based on Random Forest. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; pp. 219–224. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution. BMC Bioinform. 2007, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Boonprong, S.; Cao, C.; Chen, W.; Bao, S. Random Forest Variable Importance Spectral Indices Scheme for Burnt Forest Recovery Monitoring-Multilevel RF-VIMP. Remote Sens. 2018, 10, 807. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Keane, R.E. Describing Wildland Surface Fuel Loading for Fire Management: A Review of Approaches, Methods and Systems. Int. J. Wildl. Fire 2013, 22, 51. [Google Scholar] [CrossRef]
- Alexander, M.E.; Stefner, C.N.; Mason, J.A.; Stocks, B.J.; Hartley, G.R. Characterizing the Jack Pine—Black Spruce Fuel Complex of the International Crown Fire Modelling Experiment (ICFME); Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, Canada, 2004; ISBN 0662374223. [Google Scholar]
- Beverly, J.L.; Leverkus, S.E.R.; Cameron, H.; Schroeder, D. Stand-Level Fuel Reduction Treatments and Fire Behaviour in Canadian Boreal Conifer Forests. Fire 2020, 3, 35. [Google Scholar] [CrossRef]
- Cameron, H.A.; Schroeder, D.; Beverly, J.L. Predicting Black Spruce Fuel Characteristics with Airborne Laser Scanning (ALS). Int. J. Wildl. Fire 2021, 31, 124–135. [Google Scholar] [CrossRef]
- Mutlu, M.; Popescu, S.; Stripling, C.; Spencer, T. Mapping Surface Fuel Models Using Lidar and Multispectral Data Fusion for Fire Behavior. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of Land Cover, Forest, and Tree Species Classes with Ziyuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef]
- Ju, C.; Cai, T.; Yang, X. Topography-Based Modeling to Estimate Percent Vegetation Cover in Semi-Arid Mu Us Sandy Land, China. Comput. Electron. Agric. 2008, 64, 133–139. [Google Scholar] [CrossRef]
- Zaghi, D. Management of Natura 2000 Habitats. 9530 *(Sub)-Mediterranean Pine Forests with Endemic Black Pines. Eur. Comm. 2008, 29, 23. [Google Scholar]
- Rüetschi, M.; Small, D.; Waser, L.T. Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sens. 2019, 11, 115. [Google Scholar] [CrossRef] [Green Version]
- Westman, W.E.; Paris, J.F. Detecting Forest Structure and Biomass with C-Band Multipolarization Radar: Physical Model and Field Tests. Remote Sens. Environ. 1987, 22, 249–269. [Google Scholar] [CrossRef]
- Cordeiro, C.L.d.O.; Rossetti, D.d.F. Mapping Vegetation in a Late Quaternary Landform of the Amazonian Wetlands Using Object-Based Image Analysis and Decision Tree Classification. Int. J. Remote Sens. 2015, 36, 3397–3422. [Google Scholar] [CrossRef]
- Hansen, J.N.; Mitchard, E.T.A.; King, S. Assessing Forest/Non-Forest Separability Using Sentinel-1 C-Band Synthetic Aperture Radar. Remote Sens. 2020, 12, 1899. [Google Scholar] [CrossRef]
- Yang, R.; Wang, L.; Tian, Q.; Xu, N.; Yang, Y. Estimation of the Conifer-Broadleaf Ratio in Mixed Forests Based on Time-Series Data. Remote Sens. 2021, 13, 4426. [Google Scholar] [CrossRef]
- Bhardwaj, D.R.; Tahiry, H.; Sharma, P.; Pala, N.A.; Kumar, D.; Kumar, A. Influence of Aspect and Elevational Gradient on Vegetation Pattern, Tree Characteristics and Ecosystem Carbon Density in Northwestern Himalayas. Land 2021, 10, 1109. [Google Scholar] [CrossRef]
- Ma, M.; Liu, J.; Liu, M.; Zeng, J.; Li, Y. Tree Species Classification Based on Sentinel-2 Imagery and Random Forest Classifier in the Eastern Regions of the Qilian Mountains. Forests 2021, 12, 1736. [Google Scholar] [CrossRef]
- Fernández-Landa, A.; Algeet-Abarquero, N.; Fernández-Moya, J.; Guillén-Climent, M.L.; Pedroni, L.; García, F.; Espejo, A.; Villegas, J.F.; Marchamalo, M.; Bonatti, J.; et al. An Operational Framework for Land Cover Classification in the Context of REDD+ Mechanisms: A Case Study from Costa Rica. Remote Sens. 2016, 8, 593. [Google Scholar] [CrossRef]
- Yang, J.; El-Kassaby, Y.A.; Guan, W. The Effect of Slope Aspect on Vegetation Attributes in a Mountainous Dry Valley, Southwest China. Sci. Rep. 2020, 10, 16465. [Google Scholar] [CrossRef]
- Zeng, X.H.; Zhang, W.J.; Song, Y.G.; Shen, H.T. Slope Aspect and Slope Position Have Effects on Plant Diversity and Spatial Distribution in the Hilly Region of Mount Taihang, North China. J. Food, Agric. Environ. 2014, 12, 391–397. [Google Scholar]
- Yu, X.; Lu, D.; Jiang, X.; Li, G.; Chen, Y.; Li, D.; Chen, E. Examining the Roles of Spectral, Spatial, and Topographic Features in Improving Land-Cover and Forest Classifications in a Subtropical Region. Remote Sens. 2020, 12, 2907. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A.; Peterson, S.H.; Rechel, J. Use of Normalized Difference Water Index for Monitoring Live Fuel Moisture. Int. J. Remote Sens. 2005, 26, 1035–1042. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J.; Hao, X. Forest Fire Detection Using the Normalized Multi-Band Drought Index (NMDI) with Satellite Measurements. Agric. For. Meteorol. 2008, 148, 1767–1776. [Google Scholar] [CrossRef]
- Abdollahi, M.; Dewan, A.; Hassan, Q.K. Applicability of Remote Sensing-Based Vegetation Water Content in Modeling Lightning-Caused Forest Fire Occurrences. ISPRS Int. J. Geo-Inf. 2019, 8, 143. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Tsakiri, M.; Patias, P. Evaluation of Single-Date and Multi-Seasonal Spatial and Spectral Information of Sentinel-2 Imagery to Assess Growing Stock Volume of a Mediterranean Forest. Int J Appl Earth Obs Geoinf. 2019, 77, 1–14. [Google Scholar] [CrossRef]
- Theofanous, N.; Chrysafis, I.; Mallinis, G.; Domakinis, C.; Verde, N.; Siahalou, S. Aboveground Biomass Estimation in Short Rotation Forest Plantations in Northern Greece Using ESA’s Sentinel Medium-High Resolution Multispectral and Radar Imaging Missions. Forests 2021, 12, 902. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A Hybrid Training Approach for Leaf Area Index Estimation via Cubist and Random Forests Machine-Learning. ISPRS J. Photogramm. Remote Sens. 2018, 135, 173–188. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Sakowska, K.; Vescovo, L.; Marcolla, B.; Juszczak, R.; Olejnik, J.; Gianelle, D. Monitoring of Carbon Dioxide Fluxes in a Subalpine Grassland Ecosystem of the Italian Alps Using a Multispectral Sensor. Biogeosciences 2014, 11, 4695–4712. [Google Scholar] [CrossRef]
- Laurin, G.V.; Balling, J.; Corona, P.; Mattioli, W.; Papale, D.; Puletti, N.; Rizzo, M.; Truckenbrodt, J.; Urban, M. Above-Ground Biomass Prediction by Sentinel-1 Multitemporal Data in Central Italy with Integration of ALOS2 and Sentinel-2 Data. J. Appl. Remote Sens. 2018, 12, 016008. [Google Scholar] [CrossRef]
- Chakhar, A.; Hernández-López, D.; Ballesteros, R.; Moreno, M.A. Improving the Accuracy of Multiple Algorithms for Crop Classification by Integrating Sentinel-1 Observations with Sentinel-2 Data. Remote Sens. 2021, 13, 243. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J. Multi-Polarized SAR Application to Land Use and Land Cover Mapping in the Mountainous Three Gorges Area, China. In Proceedings of the Canadian Remote Sensing Society (CRSS)/the American Society for Photogrammetry and Remote Sensing Specialty Conference, Ottawa, ON, Canada, 28 October–1 November 2007; pp. 19–29. [Google Scholar]
- Waser, L.T.; Rüetschi, M.; Psomas, A.; Small, D.; Rehush, N. Mapping Dominant Leaf Type Based on Combined Sentinel-1/-2 Data—Challenges for Mountainous Countries. ISPRS J. Photogramm. Remote Sens. 2021, 180, 209–226. [Google Scholar] [CrossRef]
- Nasrallah, A.; Baghdadi, N.; El Hajj, M.; Darwish, T.; Belhouchette, H.; Faour, G.; Darwich, S.; Mhawej, M. Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping. Remote Sens. 2019, 11, 2228. [Google Scholar] [CrossRef]
- Bajocco, S.; Dragoz, E.; Gitas, I.; Smiraglia, D.; Salvati, L.; Ricotta, C. Mapping Forest Fuels through Vegetation Phenology: The Role of Coarse-Resolution Satellite Time-Series. PLoS ONE 2015, 10, e0119811. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; An, H. Analysis of the Importance of Five New Spectral Indices from WorldView-2 in Tree Species Classification. J. Spat. Sci. 2020, 65, 455–466. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sensors 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- McCune, B.; Keon, D. Equations for Potential Annual Direct Incident Radiation and Heat Load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef]
- García-Cimarras, A.; Manzanera, J.A.; Valbuena, R. Analysis of Mediterranean Vegetation Fuel Type Changes Using Multitemporal LiDAR. Forests 2021, 12, 335. [Google Scholar] [CrossRef]
FM | Fuel Model | Average Fuel Height (cm) | Total Fuel Load (t/ha) | Litter Depth (cm) |
---|---|---|---|---|
FM 1 | Shrubs up to 2 m height (Pseudomaquis) | 182 | 20.50 | 2.1 |
FM 2 | Forest litter layer of Oaks | 3.5 | 2.32 | 3.1 |
FM 3 | Forest litter layer of black pine | 8.2 | 6.43 | 7.2 |
FM 4 | Mediterranean grasslands | 30 | 4.85 | 1.5 |
FM 5 | Forest litter layer beech–black pine | 5.5 | 4.9 | 2.9 |
FM 6 | Forest litter layer of Norway spruce | 4.9 | 2.8 | 6.3 |
FM 7 | Forest litter layer of beech | 4.3 | 1.82 | 4.3 |
FM 8 | Forest litter layer of Calabrian pine | 7.1 | 2.35 | 6 |
FM 9 | Forest litter layer of deciduous shrubs | 3.5 | 1.12 | 2.8 |
Spectral Index | Equation and Use | Reference |
---|---|---|
Normalised Difference Vegetation Index—NDVI | [54] | |
One of the most widely used vegetation indicators that highlights the condition of vegetation. | ||
Enhanced Vegetation Index—EVI | [55] | |
Strongly related to forest cover. | ||
Normalized Difference Water Index—NDWI | [56] | |
Monitor changes in the water content of leaves. | ||
Soil Adjusted Vegetation Index—SAVI | [57] | |
Takes into account the terrain and corrects the effect of soil brightness in areas with low vegetation cover. | ||
Optimised Soil-Adjusted Vegetation Index—OSAVI | [58] | |
Provides greater soil variation than SAVI for low vegetation cover, while it demonstrates increased sensitivity to vegetation cover. | ||
Green Normalized Difference Vegetation Index—GNDVI | [59,60] | |
The use of the green band in areas with sparse vegetation reduces the sensitivity of the vegetation index to changes in the vegetation cover fraction. | ||
Renormalized Difference Vegetation Index—RDVI | [61] | |
Related to leaf biomass and canopy structure. | ||
Normalised Difference Vegetation Index—NDVI2 | [62] | |
Yields higher correlations with biomass than the standard NDVI. | ||
Sentinel Improved Vegetation Index—SVI | [63] | |
Additionally considers the red edge part of the spectrum. | ||
Modified triangular Vegetation Index—MTVI2 | [64,65,66] | |
Sensitive to leaf and canopy structure and leaf area index and weakens the effect of the soil background. |
Variables of Random Forest Models | |||
---|---|---|---|
SP | SPT | SPTS | |
Spectral variables | NDVI | NDVI | NDVI |
EVI | EVI | EVI | |
NDWI | NDWI | NDWI | |
OSAVI | OSAVI | OSAVI | |
SAVI | SAVI | SAVI | |
GNDVI | GNDVI | GNDVI | |
RDVI | RDVI | RDVI | |
NDVI2 | NDVI2 | NDVI2 | |
SVI | SVI | SVI | |
MTVI2 | MTVI2 | MTVI2 | |
Topographic variables | DEM | DEM | |
SLOPE | SLOPE | ||
ASPECT | ASPECT | ||
Backscattering variables | VV | ||
VH | |||
RATIO VV_VH |
SP | SPT | SPTS | |
---|---|---|---|
Overall accuracy (OA) | 81.39% | 91.92% | 92.76% |
Kappa | 0.75 | 0.89 | 0.90 |
Weighted kappa | 0.76 | 0.90 | 0.91 |
Out-of-bag (OOB) error rate | 18.58% | 8.42% | 7.50% |
Actual | UA (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | FM1 | FM2 | FM3 | FM4 | FM5 | FM6 | FM7 | FM8 | FM9 | NV | |
FM1 | 69.88 | 1.10 | 4.92 | 1.42 | 3.62 | 4.22 | 0.28 | 7.94 | 4.88 | 0.92 | 66.22 |
FM2 | 0.79 | 69.13 | 0.97 | 0.57 | 9.19 | 0.69 | 6.29 | 0.22 | 7.09 | 0.01 | 72.1 |
FM3 | 1.58 | 0.18 | 58.11 | 0.28 | 2.79 | 6.71 | 0.40 | 9.96 | 0.38 | 0.13 | 69.2 |
FM4 | 1.49 | 0.18 | 0.39 | 44.23 | 0.00 | 0.09 | 0.00 | 0.00 | 2.41 | 1.15 | 74.4 |
FM5 | 0.00 | 0.73 | 0.29 | 0.00 | 46.80 | 2.15 | 1.64 | 0.30 | 0.00 | 0.00 | 70.89 |
FM6 | 2.45 | 0.27 | 7.05 | 0.09 | 10.58 | 77.54 | 0.17 | 3.30 | 0.06 | 0.01 | 82.43 |
FM7 | 0.26 | 15.43 | 0.97 | 0.47 | 23.12 | 1.55 | 84.54 | 0.30 | 8.11 | 0.05 | 77.88 |
FM8 | 4.55 | 0.00 | 17.95 | 0.19 | 0.84 | 5.34 | 0.00 | 71.76 | 0.06 | 0.16 | 74.96 |
FM9 | 6.04 | 11.14 | 1.16 | 3.59 | 1.67 | 0.34 | 4.42 | 0.52 | 69.22 | 0.64 | 73.65 |
NV | 12.96 | 1.83 | 8.20 | 49.15 | 1.39 | 1.38 | 2.27 | 5.69 | 7.79 | 96.93 | 88.96 |
OA (%) | 69.88 | 69.13 | 58.11 | 44.23 | 46.8 | 77.54 | 84.54 | 71.76 | 69.22 | 96.93 |
Actual | UA (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | FM1 | FM2 | FM3 | FM4 | FM5 | FM6 | FM7 | FM8 | FM9 | NV | |
FM1 | 86.69 | 1.64 | 2.99 | 0.47 | 2.23 | 0.00 | 0.11 | 4.19 | 3.80 | 0.45 | 81.89 |
FM2 | 1.23 | 86.67 | 1.64 | 0.19 | 0.00 | 0.00 | 1.87 | 1.05 | 3.99 | 0.00 | 86.9 |
FM3 | 0.53 | 0.37 | 79.05 | 0.19 | 2.79 | 0.17 | 0.40 | 9.51 | 0.13 | 0.05 | 83.32 |
FM4 | 0.00 | 0.00 | 0.10 | 82.99 | 0.28 | 0.60 | 0.45 | 0.00 | 0.57 | 0.06 | 96.59 |
FM5 | 0.00 | 0.00 | 0.00 | 0.00 | 59.33 | 2.07 | 0.40 | 0.00 | 0.00 | 0.00 | 87.30 |
FM6 | 0.00 | 0.00 | 0.10 | 0.19 | 8.36 | 96.64 | 0.34 | 0.00 | 0.00 | 0.00 | 96.64 |
FM7 | 0.09 | 4.29 | 1.06 | 0.57 | 24.79 | 0.52 | 93.66 | 0.00 | 3.23 | 0.00 | 88.69 |
FM8 | 5.34 | 0.18 | 12.16 | 0.19 | 0.00 | 0.00 | 0.00 | 82.25 | 0.25 | 0.17 | 83.94 |
FM9 | 2.10 | 6.76 | 0.58 | 1.51 | 1.95 | 0.00 | 2.77 | 0.15 | 85.12 | 0.21 | 87.27 |
NV | 4.03 | 0.09 | 2.32 | 13.71 | 0.28 | 0.00 | 0.00 | 2.85 | 2.91 | 99.06 | 96.58 |
OA (%) | 86.69 | 86.67 | 79.05 | 82.99 | 59.33 | 96.64 | 93.66 | 82.25 | 85.12 | 99.06 |
Actual | UA (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | FM1 | FM2 | FM3 | FM4 | FM5 | FM6 | FM7 | FM8 | FM9 | NV | |
FM1 | 88.88 | 1.83 | 2.12 | 0.19 | 2.51 | 0.00 | 0.11 | 3.00 | 4.24 | 0.29 | 84.44 |
FM2 | 1.05 | 87.67 | 1.54 | 0.09 | 0.28 | 0.00 | 1.81 | 0.45 | 3.55 | 0.00 | 88.56 |
FM3 | 0.35 | 0.37 | 80.79 | 0.38 | 2.51 | 0.09 | 0.28 | 8.76 | 0.19 | 0.03 | 84.8 |
FM4 | 0.00 | 0.00 | 0.10 | 85.16 | 0.00 | 0.52 | 0.34 | 0.00 | 0.51 | 0.07 | 97.09 |
FM5 | 0.00 | 0.00 | 0.10 | 0.00 | 63.23 | 1.98 | 0.28 | 0.00 | 0.00 | 0.00 | 88.67 |
FM6 | 0.00 | 0.00 | 0.10 | 0.09 | 8.36 | 96.99 | 0.40 | 0.00 | 0.00 | 0.00 | 96.66 |
FM7 | 0.00 | 3.84 | 1.06 | 0.57 | 21.17 | 0.43 | 94.05 | 0.00 | 3.29 | 0.00 | 89.64 |
FM8 | 4.47 | 0.18 | 11.97 | 0.09 | 0.00 | 0.00 | 0.00 | 85.77 | 0.06 | 0.16 | 85.58 |
FM9 | 1.84 | 6.03 | 0.39 | 1.04 | 1.67 | 0.00 | 2.72 | 0.07 | 84.99 | 0.22 | 88.41 |
NV | 3.42 | 0.09 | 1.83 | 12.38 | 0.28 | 0.00 | 0.00 | 1.95 | 3.17 | 99.22 | 96.96 |
OA (%) | 88.88 | 87.67 | 80.79 | 85.16 | 63.23 | 96.99 | 94.05 | 85.77 | 84.99 | 99.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrysafis, I.; Damianidis, C.; Giannakopoulos, V.; Mitsopoulos, I.; Dokas, I.M.; Mallinis, G. Vegetation Fuel Mapping at Regional Scale Using Sentinel-1, Sentinel-2, and DEM Derivatives—The Case of the Region of East Macedonia and Thrace, Greece. Remote Sens. 2023, 15, 1015. https://doi.org/10.3390/rs15041015
Chrysafis I, Damianidis C, Giannakopoulos V, Mitsopoulos I, Dokas IM, Mallinis G. Vegetation Fuel Mapping at Regional Scale Using Sentinel-1, Sentinel-2, and DEM Derivatives—The Case of the Region of East Macedonia and Thrace, Greece. Remote Sensing. 2023; 15(4):1015. https://doi.org/10.3390/rs15041015
Chicago/Turabian StyleChrysafis, Irene, Christos Damianidis, Vasileios Giannakopoulos, Ioannis Mitsopoulos, Ioannis M. Dokas, and Giorgos Mallinis. 2023. "Vegetation Fuel Mapping at Regional Scale Using Sentinel-1, Sentinel-2, and DEM Derivatives—The Case of the Region of East Macedonia and Thrace, Greece" Remote Sensing 15, no. 4: 1015. https://doi.org/10.3390/rs15041015
APA StyleChrysafis, I., Damianidis, C., Giannakopoulos, V., Mitsopoulos, I., Dokas, I. M., & Mallinis, G. (2023). Vegetation Fuel Mapping at Regional Scale Using Sentinel-1, Sentinel-2, and DEM Derivatives—The Case of the Region of East Macedonia and Thrace, Greece. Remote Sensing, 15(4), 1015. https://doi.org/10.3390/rs15041015