Comparison of VLF Signal Responses to Solar Flares along Daytime and Nighttime Propagation Paths
Abstract
:1. Introduction
2. Instrument and Database
2.1. The WHU ELF/VLF Instrument
2.2. The Criterion for Selecting Solar Flare Events and the Detrending Method
- (1)
- To minimize the sunrise and sunset effects [38,40], solar flares that occur half an hour before and after the local sunrise or sunset time are not considered. The sunrise or sunset time corresponding to the VLF propagation path is jointly determined by the local sunrise or sunset time at the transmitter and the receiving station. The local sunrise and sunset time are obtained from the NOAA Global Monitoring Laboratory (https://gml.noaa.gov/grad/solcalc/, accessed on 1 September 2022).
- (2)
- Moreover, for the sake of comparison, we only consider those flare events with high-quality VLF measurements with a signal-to-noise ratio (SNR) higher than 3 dB. VLF measurements with SNR lower than 3 dB in either NAA-GWS or NWC-SZS path are considered as low-quality and not used in the present study.
3. Observations
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fletcher, L.; Dennis, B.R.; Hudson, H.S.; Krucker, S.; Phillips, K.; Veronig, A.; Battaglia, M.; Bone, L.; Caspi, A.; Chen, Q.; et al. An observational overview of solar flares. Space Sci. Rev. 2011, 159, 19. [Google Scholar]
- Qian, L.; Wang, W.; Burns, A.G.; Chamberlin, P.C.; Solomon, S.C. Responses of the thermosphere and ionosphere system to concurrent solar flares and geomagnetic storms. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027431. [Google Scholar] [CrossRef]
- Xiong, B.; Wan, W.; Liu, L.; Withers, P.; Zhao, B.; Ning, B.; Wei, Y.; Le, H.; Ren, Z.; Chen, Y.; et al. Ionospheric response to the x-class solar flare on 7 September 2005. J. Geophys. Res. Space Phys. 2011, 116, A11317. [Google Scholar] [CrossRef]
- Emslie, A.; Dennis, B.; Shih, A.; Chamberlin, P.; Mewaldt, R.; Moore, C.; Welsch, B. Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 2012, 759, 71. [Google Scholar] [CrossRef]
- Poulsen, W.; Inan, U.; Bell, T. A multiple-mode three-dimensional model of VLF propagation in the Earth-ionosphere waveguide in the presence of localized D region disturbances. J. Geophys. Res. Space Phys. 1993, 98, 1705–1717. [Google Scholar] [CrossRef]
- Palit, S.; Raulin, J.-P.; Szpigel, S. Response of Earth’s Upper Atmosphere and VLF Propagation to Celestial X-Ray Ionization: Investigation With Monte Carlo Simulation and Long Wave Propagation Capability code. J. Geophys. Res. Space Phys. 2018, 123, 10224–10238. [Google Scholar] [CrossRef]
- Cohen, M.B.; Inan, U.S.; Paschal, E.P. Sensitive broadband ELF/VLF radio reception with the AWESOME instrument. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3–17. [Google Scholar] [CrossRef]
- Wait, J.R. Mode conversion and refraction effects in the Earth-ionosphere waveguide for VLF radio waves. J. Geophys. Res. Space Phys. 1968, 73, 5809. [Google Scholar] [CrossRef]
- Cummer, S.A.; Inan, U.S.; Bell, T.F. Ionospheric D region remote sensing using vlf radio atmospherics. Radio Sci. 1998, 33, 1781–1792. [Google Scholar] [CrossRef]
- Thomson, N.R.; Clilverd, A.M. Solar flare induced ionospheric D-region enhancements from VLF amplitude observations. J. Atmos. Sol.-Terr. Phys. 2001, 63, 1729–1737. [Google Scholar] [CrossRef]
- Žigman, V.; Grubor, D.; Šulić, D. D-region electron density evaluated from vlf amplitude time delay during x-ray solar flares. J. Atmos. Sol.-Terr. Phys. 2007, 69, 775–792. [Google Scholar] [CrossRef]
- Inan, U.S.; Cummer, S.A.; Marshall, R.A. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J. Geophys. Res. Space Phys. 2010, 115, A00E36. [Google Scholar] [CrossRef]
- Thomson, N.R. Daytime tropical D region parameters from short path VLF phase and amplitude. J. Geophys. Res. Space Phys. 2010, 115, A09313. [Google Scholar] [CrossRef]
- Thomson, N.R.; Rodger, C.J.; Clilverd, M.A. Daytime D region parameters from long-path VLF phase and amplitude. J. Geophys. Res. Space Phys. 2011, 116, A11305. [Google Scholar] [CrossRef]
- Xu, W.; Marshall, R.A.; Bortnik, J.; Bonnell, J.W. An electron density model of the d-and e-region ionosphere for transionospheric vlf propagation. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029288. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, A.K.; Singh, R.; Singh, R.P. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements. Astrophys. Space Sci. 2014, 350, 1–9. [Google Scholar] [CrossRef]
- Selvakumaran, R.; Maurya, A.K.; Gokani, S.A.; Veenadhari, B.; Kumar, S.; Venkatesham, K.; Phanikumar, D.V.; Singh, A.K.; Siingh, D.; Singh, R. Solar flares induced D-region ionospheric and geomagnetic perturbations. J. Atmos. Sol.-Terr. Phys. 2015, 123, 102–112. [Google Scholar] [CrossRef]
- Rathore, V.S.; Kumar, S.; Singh, A.K.; Singh, A.K. Ionospheric response to an intense solar flare in equatorial and low latitude region. Indian J. Phys. 2018, 92, 1213–1222. [Google Scholar] [CrossRef]
- McRae, W.M.; Thomson, N.R. Solar flare induced ionospheric d-region enhancements from vlf phase and amplitude observations. J. Atmos. Sol.-Terr. Phys. 2004, 66, 77–87. [Google Scholar] [CrossRef]
- Tan, L.M.; Thu, N.N.; Ha, T.Q. Observation of the effects of solar flares on the NWC signal using the new VLF receiver at tay nguyen university. Sun Geosph. 2014, 8, 27–31. [Google Scholar]
- Gu, X.; Luo, F.; Peng, R.; Li, G.; Chen, H.; Wang, S.; Yi, J.; Li, Z.; Ni, B.; Zhao, Z.; et al. Response characteristics of very low frequency signals from JJI transmitter to solar flare events. Chin. J. Geohpys. 2021, 64, 1508–1517. (In Chinese) [Google Scholar]
- George, H.E.; Rodger, C.J.; Clilverd, M.A.; Cresswell-Moorcock, K.; Brundell, J.B.; Thomson, N.R. Developing a Nowcasting Capability for X-Class Solar Flares Using VLF Radiowave Propagation Changes. Space Weather. 2019, 17, 1783–1799. [Google Scholar] [CrossRef]
- Belcher, S.R.G.; Clilverd, M.A.; Rodger, C.J.; Cook, S.; Thomson, N.R.; Brundell, J.B.; Raita, T. Solar flare X-ray impacts on long subionospheric VLF paths. Space Weather. 2021, 19, e2021SW002820. [Google Scholar] [CrossRef]
- Šulić, D.M.; Srećković, V.A. A comparative study of measured amplitude and phase perturbations of VLF and LF radio signals induced by solar flares. Serb. Astron. J. 2014, 188, 45–54. [Google Scholar] [CrossRef]
- Ferguson, J.A. Ionospheric model validation at VLF and LF. Radio Sci. 1995, 30, 775–782. [Google Scholar] [CrossRef]
- Palit, S.; Basak, T.; Pal, S.; Mondal, S.K.; Chakrabarti, S.K. Effect of solar flares on ionospheric VLF radio wave propagation, modeling with GEANT4 and LWPC and determination of effective reflection height. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar]
- Bouderba, Y.; NaitAmor, S.; Tribeche, M. Study of the solar flares effect on VLF radio signal propagating along NRK-ALG path using LWPC code. J. Geophys. Res. Space Phys. 2016, 121, 6799–6807. [Google Scholar] [CrossRef]
- Ohshio, M. Solar flare effect on geomagnetic variation. Rept. Ionos. Space Res. Jpn. 1964, 11, 377–491. [Google Scholar]
- Sastri, J.H.; Murthy, B.S. Geomagnetic effects in the dark hemisphere associated with solar flares. J. Geomag. Geoelectr. 1975, 27, 67–73. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Ni, B.; Zhao, Z.; Gu, X.; Chen, Z.; Wang, F. Development of ground-based ELF/VLF receiver system in Wuhan and its first results. Adv. Space Res. 2016, 57, 1871–1880. [Google Scholar] [CrossRef]
- Chen, Y.; Ni, B.; Gu, X.; Zhao, Z.; Yang, G.; Zhou, C.; Zhang, Y. First observations of low latitude whistlers using WHU ELF/VLF receiver system. Sci. China Tech. Sci. 2017, 60, 166–174. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Q.; Ni, B.; Xu, W.; Wang, S.; Yi, J.; Hu, Z.; Li, B.; He, F.; Chen, X.; et al. First results of the wave measurements by the WHU VLF wave detection system at the Chinese Great Wall station in Antarctica. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030784. [Google Scholar] [CrossRef]
- Yi, J.; Gu, X.; Li, Z.; Lin, R.; Cai, Y.; Chen, L.; Ni, B.; Yue, X. Modeling and analysis of NWC signal propagation amplitude based on LWPC and IRI models. Chin. J. Geohpys. 2019, 62, 3223–3234. (In Chinese) [Google Scholar]
- Yi, J.; Gu, X.; Cheng, W.; Tang, X.; Chen, L.; Ni, B.; Zhou, R.; Zhao, Z.; Wang, Q.; Zhou, L. A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters. Earth Planet Phys. 2020, 4, 238–245. [Google Scholar] [CrossRef]
- Zhou, R.; Gu, X.; Yang, K.; Li, G.; Ni, B.; Yi, J.; Chen, L.; Zhao, F.; Zhao, Z.; Wang, Q.; et al. A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method. Earth Planet Phys. 2020, 4, 120–130. [Google Scholar] [CrossRef]
- Gu, X.; Li, G.; Pang, H.; Wang, S.; Ni, B.; Luo, F.; Peng, R.; Chen, L. Statistical analysis of very low frequency atmospheric noise caused by the global lightning using ground-based observations in China. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029101. [Google Scholar] [CrossRef]
- Gu, X.; Chen, H.; Wang, S.; Lu, Z.; Ni, B.; Li, G.; Cheng, W. Extraction of Alpha transmitter signals from single-station observations using the direction-finding method. Sci. China Tech. Sci. 2022, 65, 1727–1737. [Google Scholar] [CrossRef]
- Wang, S.; Ni, B.; Gu, X.; Lin, R.; Li, G.; Luo, F.; Peng, R.; Chen, H. Sunrise effect of Very-Low-Frequency JJI transmitter signal propagation over an east-west path. Chin. J. Geohpys. 2022, 65, 145–156. (In Chinese) [Google Scholar]
- Gu, X.; Peng, R.; Wang, S.; Ni, B.; Luo, F.; Li, G.; Li, Z. Responses of the very low frequency transmitter signals during the solar eclipse on 26 December, 2019 over a North-South propagation path. IEEE Trans. Geosci. Remote Sens. 2022, 60, 2000207. [Google Scholar] [CrossRef]
- Wang, S.; Gu, X.; Luo, F.; Peng, R.; Chen, H.; Li, G.; Ni, B.; Zhao, Z.; Yuan, D. Observations and analyses of the sunrise effect for NWC VLF transmitter signals. Chin. J. Geohpys. 2020, 63, 4300–4311. (In Chinese) [Google Scholar]
- Raulin, J.-P.; Trottet, G.; Kretzschmar, M.; Macotela, E.; Pacini, A.; Bertoni, F.; Dammash, I. Response of the low ionosphere to X-ray and Lyman-α solar flare emissions. J. Geophys. Res. Space Phys. 2013, 118, 570–575. [Google Scholar] [CrossRef]
- Taylor, J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements; University Science Books: Sausalito, CA, USA, 1997; pp. 181–198. [Google Scholar]
- Goody, R.; West, R.; Chen, L.; Crisp, D. The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer. 1989, 42, 539–550. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Bai, Y. An integrated approach to estimate shortwave solar radiation on clear-sky days in rugged terrain using MODIS atmospheric products. Sol. Energy 2015, 113, 347–357. [Google Scholar] [CrossRef]
- Curto, J.J. Geomagnetic solar flare effects: A review. J. Space Weather Space Clim. 2020, 10, 27. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Solar fare effects on D-region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24. Earth Planets Space. 2018, 70, 29. [Google Scholar] [CrossRef]
# | Start Time (UT) | Peak Time (UT) | End Time (UT) | Class | X-ray Flux (×10−5 W·m2) | NWC-SZS | NAA-GWS | ||
---|---|---|---|---|---|---|---|---|---|
ΔAmp (dB) | ΔPha (°) | ΔAmp (dB) | ΔPha (°) | ||||||
1 | 2022-03-29 00:59:34 | 2022-03-29 01:12:02 | 2022-03-29 01:24:53 | M2.2 | 2.2 | 1.22 | 54.33 | No response | No response |
2 | 2022-03-29 01:52:17 | 2022-03-29 01:58:12 | 2022-03-29 02:02:13 | M1.1 | 1.1 | 0.49 | 13.94 | No response | No response |
3 | 2022-03-30 17:21:28 | 2022-03-30 17:37:40 | 2022-03-30 17:45:19 | X1.3 | 13 | No response | No response | 7.36 | 279.61 |
4 | 2022-03-31 18:21:15 | 2022-03-31 18:35:06 | 2022-03-31 18:44:11 | M9.7 | 9.7 | No response | No response | 6.97 | 246.71 |
5 | 2022-04-02 02:42:05 | 2022-04-02 02:56:41 | 2022-04-02 03:05:30 | M2.9 | 2.9 | 1.04 | 92.48 | No response | No response |
6 | 2022-04-02 13:21:42 | 2022-04-02 13:55:39 | 2022-04-02 14:39:21 | M3.9 | 3.9 | No response | No response | 5.10 | 148.21 |
7 | 2022-04-02 17:37:58 | 2022-04-02 17:44:53 | 2022-04-02 17:49:59 | M4.3 | 4.3 | No response | No response | 6.17 | 155.72 |
8 | 2022-04-15 13:50:07 | 2022-04-15 13:59:16 | 2022-04-15 14:09:52 | M1.9 | 1.9 | No response | No response | 4.25 | 65.99 |
9 | 2022-04-16 14:48:48 | 2022-04-16 14:56:26 | 2022-04-16 15:08:21 | M1.0 | 1.0 | No response | No response | 4.76 | 85.01 |
10 | 2022-04-17 01:29:07 | 2022-04-17 02:11:20 | 2022-04-17 02:25:26 | M1.9 | 1.9 | 0.88 | 66.38 | No response | No response |
11 | 2022-04-17 03:20:08 | 2022-04-17 03:35:04 | 2022-04-17 03:50:11 | X1.1 | 11 | 1.34 | 127.06 | No response | No response |
12 | 2022-04-17 19:55:37 | 2022-04-17 20:02:32 | 2022-04-17 20:05:08 | M1.6 | 1.6 | No response | No response | 6.47 | 86.64 |
13 | 2022-04-18 07:41:05 | 2022-04-18 07:48:43 | 2022-04-18 07:52:27 | M1.3 | 1.3 | 1.22 | 37.47 | No response | No response |
14 | 2022-04-19 04:43:14 | 2022-04-19 04:50:31 | 2022-04-19 04:58:17 | M1.1 | 1.1 | 0.82 | 43.19 | No response | No response |
15 | 2022-04-20 12:28:01 | 2022-04-20 12:53:46 | 2022-04-20 13:00:38 | M1.9 | 1.9 | No response | No response | 10.34 | 202.96 |
16 | 2022-04-21 01:49:38 | 2022-04-21 01:59:23 | 2022-04-21 02:03:55 | M9.7 | 9.7 | 1.35 | 130.61 | No response | No response |
17 | 2022-04-22 04:55:21 | 2022-04-22 05:14:37 | 2022-04-22 05:27:10 | M1.1 | 1.1 | 0.90 | 37.07 | No response | No response |
18 | 2022-04-25 01:23:57 | 2022-04-25 02:00:53 | 2022-04-25 02:35:37 | M1.3 | 1.3 | 1.13 | 54.28 | No response | No response |
19 | 2022-04-25 03:56:17 | 2022-04-25 04:02:18 | 2022-04-25 04:05:52 | M1.2 | 1.2 | 0.75 | 45.75 | No response | No response |
20 | 2022-04-29 07:16:34 | 2022-04-29 07:30:19 | 2022-04-29 07:41:26 | M1.2 | 1.2 | 0.75 | 19.69 | No response | No response |
21 | 2022-04-29 18:01:27 | 2022-04-29 18:09:56 | 2022-04-29 18:20:59 | M1.2 | 1.2 | No response | No response | 3.84 | 116.12 |
22 | 2022-04-30 04:49:48 | 2022-04-30 05:01:11 | 2022-04-30 05:05:35 | M2.6 | 2.6 | 1.04 | 82.14 | No response | No response |
23 | 2022-04-30 05:25:28 | 2022-04-30 05:35:01 | 2022-04-30 05:39:19 | M1.4 | 1.4 | 1.17 | 18.52 | No response | No response |
24 | 2022-04-30 13:39:26 | 2022-04-30 13:47:44 | 2022-04-30 13:51:17 | X1.1 | 11 | No response | No response | 9.15 | 314.62 |
25 | 2022-05-03 07:39:02 | 2022-05-03 07:53:57 | 2022-05-03 08:00:13 | M1.3 | 1.3 | 1.33 | 35.31 | No response | No response |
26 | 2022-05-03 13:17:07 | 2022-05-03 13:25:36 | 2022-05-03 13:30:12 | X1.1 | 11 | No response | No response | 10.47 | 276.12 |
27 | 2022-05-04 16:07:29 | 2022-05-04 16:32:41 | 2022-05-04 16:55:51 | M1.2 | 1.2 | No response | No response | 6.19 | 104.36 |
28 | 2022-05-10 13:27:50 | 2022-05-10 13:55:51 | 2022-05-10 13:57:29 | X1.8 | 18 | No response | No response | 10.17 | 293.30 |
29 | 2022-05-11 16:38:39 | 2022-05-11 16:49:43 | 2022-05-11 16:57:24 | M1.6 | 1.6 | No response | No response | 4.97 | 138.22 |
30 | 2022-05-19 07:00:50 | 2022-05-19 07:19:12 | 2022-05-19 07:29:50 | M5.6 | 5.6 | 1.89 | 71.75 | No response | No response |
31 | 2022-05-19 15:06:39 | 2022-05-19 15:16:06 | 2022-05-19 15:22:17 | M1.1 | 1.1 | No response | No response | 4.63 | 133.39 |
32 | 2022-05-20 07:39:41 | 2022-05-20 07:45:07 | 2022-05-20 07:46:43 | M3.4 | 3.4 | 1.73 | 74.55 | No response | No response |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Yi, J.; Wang, S.; Hu, Z.; Xu, W.; Ni, B.; Li, B.; He, F.; Chen, X.; Hu, H. Comparison of VLF Signal Responses to Solar Flares along Daytime and Nighttime Propagation Paths. Remote Sens. 2023, 15, 1018. https://doi.org/10.3390/rs15041018
Gu X, Yi J, Wang S, Hu Z, Xu W, Ni B, Li B, He F, Chen X, Hu H. Comparison of VLF Signal Responses to Solar Flares along Daytime and Nighttime Propagation Paths. Remote Sensing. 2023; 15(4):1018. https://doi.org/10.3390/rs15041018
Chicago/Turabian StyleGu, Xudong, Juan Yi, Shiwei Wang, Zejun Hu, Wei Xu, Binbin Ni, Bin Li, Fang He, Xiangcai Chen, and Hongqiao Hu. 2023. "Comparison of VLF Signal Responses to Solar Flares along Daytime and Nighttime Propagation Paths" Remote Sensing 15, no. 4: 1018. https://doi.org/10.3390/rs15041018
APA StyleGu, X., Yi, J., Wang, S., Hu, Z., Xu, W., Ni, B., Li, B., He, F., Chen, X., & Hu, H. (2023). Comparison of VLF Signal Responses to Solar Flares along Daytime and Nighttime Propagation Paths. Remote Sensing, 15(4), 1018. https://doi.org/10.3390/rs15041018