Local Climate Zones to Identify Surface Urban Heat Islands: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Step 1: Identification
2.2. Step 2: Selection
2.3. Step 3: Eligibility
2.4. Step 4: Inclusion
2.5. Step 5: Data Analysis
3. Results and Discussion
3.1. Relevance of Scientific Production
3.2. Regional and Global Contribution
3.3. Analysis of Satellites and Sensors
3.4. Method to Obtain the Land Surface Temperature (LST)
3.5. Surface Urban Heat Island (SUHI) Calculation
3.6. Method to Obtain the Local Climate Zones
3.7. Variables Associated with SUHI and LCZ
3.8. Most Used Software
4. Final Considerations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Title | Year of Publication | Authors |
---|---|---|
Dynamics and controls of urban heat sink and island phenomena in a desert city: Development of a local climate zone scheme using remotely sensed inputs | 2016 | [22] |
Analysis of land use change and expansion of surface urban heat island in Bogor city by remote sensing | 2018 | [53] |
Understanding Land Surface Temperature Differences of Local Climate Zones Based on Airborne Remote Sensing Data | 2018 | [16] |
Analysis of the Spatial and Temporal Variations in Land Surface Temperature Based on Local Climate Zones: A Case Study in Nanjing, China | 2019 | [29] |
Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone | 2019 | [15] |
Enhanced geographic information system-based mapping of local climate zones in Beijing, China | 2019 | [56] |
Impact of atmospheric conditions and levels of urbanization on the relationship between nocturnal surface and urban canopy heat islands | 2019 | [57] |
Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities | 2019 | [58] |
Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification | 2019 | [44] |
Seasonality of Surface Urban Heat Island in Delhi City Region Measured by Local Climate Zones and Conventional Indicators | 2019 | [54] |
SUHI analysis using Local Climate Zones—A comparison of 50 cities | 2019 | [43] |
Urban design factors influencing surface urban heat island in the high-density city of Guangzhou based on the local climate zone | 2019 | [59] |
Annual and monthly analysis of surface urban heat island intensity with respect to the local climate zones in Budapest | 2020 | [60] |
Evaluation of urban heat islands using local climate zones and the influence of sea–land breeze. | 2020 | [14] |
Inter-local climate zone differentiation of land surface temperatures for Management of Urban Heat in Nairobi City, Kenya | 2020 | [61] |
Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China | 2020 | [62] |
Optimizing local climate zones to mitigate urban heat island effect in human settlements | 2020 | [4] |
Remote sensing of urban thermal environments within local climate zones: A case study of two high-density subtropical Chinese cities | 2020 | [63] |
Spatial and temporal analysis of the increasing effects of large-scale infrastructure construction on the surface urban heat island | 2020 | [51] |
Spatiotemporal Changes in the Urban Heat Island Intensity of Distinct Local Climate Zones: Case Study of Zhongshan District, Dalian, China | 2020 | [38] |
The local climate impact of an African city during clear-sky conditions—Implications of the recent urbanization in Kampala (Uganda) | 2020 | [24] |
Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv | 2020 | [45] |
Use of Local Climate Zones to investigate surface urban heat islands in Texas | 2020 | [64] |
Using local climate zones to compare remotely sensed surface temperatures in temperate cities and hot desert cities | 2020 | [40] |
A cooled city? Comparing human activity changes on the impact of urban thermal environment before and after city-wide lockdown | 2021 | [47] |
A practical approach of urban green infrastructure planning to mitigate urban overheating: A case study of Guangzhou | 2021 | [42] |
An application of the LCZ approach in surface urban heat island mapping in Sofia, Bulgaria | 2021 | [31] |
Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data | 2021 | [13] |
Combination of Sentinel-2 and PALSAR-2 for Local Climate Zone Classification: A Case Study of Nanchang, China | 2021 | [25] |
Dynamic changes of local climate zones in the Guangdong–Hong Kong–Macao greater bay area and their spatial-temporal impacts on the surface urban heat island effect between 2005 and 2015 | 2021 | [65] |
Evaluation of seasonal variability in magnitude of urban heat islands using local climate zone classification and surface albedo | 2021 | [41] |
Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data | 2021 | [27] |
Exploring the relationship between urban form and land surface temperature (LST) in a semi-arid region case study of Ben Guerir city—Morocco | 2021 | [35] |
LCZ scheme for assessing Urban Heat Island intensity in a complex urban area (Beirut, Lebanon) | 2021 | [66] |
Local climate zones and thermal characteristics in Riyadh City, Saudi Arabia | 2021 | [67] |
Local climate zones mapping using object-based image analysis and validation of its effectiveness through urban surface temperature analysis in China | 2021 | [28] |
Seasonal SUHI analysis using local climate zone classification: A case study of Wuhan, China | 2021 | [68] |
Spatial variability and temporal heterogeneity of surface urban heat island patterns and the suitability of local climate zones for land surface temperature characterization | 2021 | [12] |
Spatiotemporal characteristics of the surface urban heat island and its driving factors based on local climate zones and population in Beijing, China | 2021 | [5] |
The suitability of the urban local climate zone classification scheme for surface temperature studies in distinct macroclimate regions | 2021 | [69] |
Time Evolution of the Surface Urban Heat Island | 2021 | [70] |
Urban Thermal Characteristics of Local Climate Zones and Their Mitigation Measures across Cities in Different Climate Zones of China | 2021 | [55] |
An urban energy balance-guided machine learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in Naples | 2022 | [50] |
Analysis of surface urban heat islands based on local climate zones via spatiotemporally enhanced land surface temperature | 2022 | [30] |
Diurnally continuous dynamics of surface urban heat island intensities of local climate zones with spatiotemporally enhanced satellite-derived land surface temperatures | 2022 | [39] |
Estimation of the Urban Heat Island Effect in a Reformed Urban District: A Scenario-Based Study in Hong Kong | 2022 | [46] |
Geographical Detection of Urban Thermal Environment Based on the Local Climate Zones: A Case Study in Wuhan, China | 2022 | [71] |
Identification of SUHI in Urban Areas by Remote Sensing Data and Mitigation Hypothesis through Solar Reflective Materials | 2022 | [23] |
Spatiotemporal evolution of urban development and surface urban heat island in Guangdong–Hong Kong–Macau greater bay area of China from 2013 to 2019 | 2022 | [72] |
The role of blue green infrastructure in the urban thermal environment across seasons and local climate zones in East Africa | 2022 | [26] |
Using Local Climate Zones to investigate Spatio-temporal evolution of thermal environment at the urban regional level: A case study in Xi’an, China | 2022 | [32] |
References
- United Nations. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 9 August 2022).
- Dewan, A.; Kiselev, G.; Botje, D. Diurnal and Seasonal Trends and Associated Determinants of Surface Urban Heat Islands in Large Bangladesh Cities. Appl. Geogr. 2021, 135, 102533. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Irakulis, I.A. Methodology for Comparing the Surface Urban Heat Island in Selected Urban Agglomerations Around the World from Sentinel-3 SLSTR Data. Remote Sens. 2020, 12, 2052. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Xiu, C.; Xiao, X.; Xia, J.; Jin, C. Optimizing Local Climate Zones to Mitigate Urban Heat Island Effect in Human Settlements. J. Clean. Prod. 2020, 275, 123767. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Liu, L.; Liang, Z.; Shen, J.; Wei, F.; Li, S. Spatiotemporal Characteristics of the Surface Urban Heat Island and Its Driving Factors Based on Local Climate Zones and Population in Beijing, China. Atmosphere 2021, 12, 1271. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci. 2021, 9, 637455. [Google Scholar] [CrossRef]
- Souza, C.A.; De Paranhos Filho, A.C.; Guaraldo, E. IDENTIFICAÇÃO E CARACTERIZAÇÃO DA PAISAGEM URBANA E ENTORNO RURAL DE CAMPO GRANDE. Rev. Gestão Sustentabilidade Ambient. 2020, 9, 263. [Google Scholar] [CrossRef]
- Lehnert, M.; Savić, S.; Milošević, D.; Dunjić, J.; Geletič, J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. Int. J. Geo-Inf. 2021, 10, 260. [Google Scholar] [CrossRef]
- Xue, J.; You, R.; Liu, W.; Chen, C.; Lai, D. Applications of Local Climate Zone Classification Scheme to Improve Urban Sustainability: A Bibliometric Review. Sustainability 2020, 12, 8083. [Google Scholar] [CrossRef]
- Viana, J.; Santos, J.; Neiva, R.; Souza, J.; Duarte, L.; Teodoro, A.; Freitas, A. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis. Remote Sens. 2017, 9, 1225. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Sharifi, A.; Dong, X.; Shen, L.; He, B.-J. Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization. Remote Sens. 2021, 13, 4338. [Google Scholar] [CrossRef]
- Unal Cilek, M.; Cilek, A. Analyses of Land Surface Temperature (LST) Variability among Local Climate Zones (LCZs) Comparing Landsat-8 and ENVI-Met Model Data. Sustain. Cities Soc. 2021, 69, 102877. [Google Scholar] [CrossRef]
- Zhou, X.; Okaze, T.; Ren, C.; Cai, M.; Ishida, Y.; Watanabe, H.; Mochida, A. Evaluation of Urban Heat Islands Using Local Climate Zones and the Influence of Sea-Land Breeze. Sustain. Cities Soc. 2020, 55, 102060. [Google Scholar] [CrossRef]
- Wang, R.; Cai, M.; Ren, C.; Bechtel, B.; Xu, Y.; Ng, E. Detecting Multi-Temporal Land Cover Change and Land Surface Temperature in Pearl River Delta by Adopting Local Climate Zone. Urban Clim. 2019, 28, 100455. [Google Scholar] [CrossRef]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A.; Irger, M. Understanding Land Surface Temperature Differences of Local Climate Zones Based on Airborne Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2724–2730. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual, version 1.6.18. Leiden University: Leiden, The Netherlands, 2022. [Google Scholar]
- USGS. Available online: https://www.usgs.gov/landsat-missions/landsat-satellite-missions (accessed on 28 June 2022).
- NASA. Available online: http://aqua.nasa.gov/ (accessed on 28 June 2022).
- NASA. Available online: http://www.nasa.gov/mission_pages/terra/index.html (accessed on 28 June 2022).
- Sattelite Imaging Corporation. Available online: www.satimagingcorp.com/satellite-sensors/aster.html (accessed on 28 June 2022).
- Nassar, A.K.; Blackburn, G.A.; Whyatt, J.D. Dynamics and Controls of Urban Heat Sink and Island Phenomena in a Desert City: Development of a Local Climate Zone Scheme Using Remotely-Sensed Inputs. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 76–90. [Google Scholar] [CrossRef]
- Costanzini, S.; Despini, F.; Beltrami, L.; Fabbi, S.; Muscio, A.; Teggi, S. Identification of SUHI in Urban Areas by Remote Sensing Data and Mitigation Hypothesis through Solar Reflective Materials. Atmosphere 2021, 13, 70. [Google Scholar] [CrossRef]
- Brousse, O.; Wouters, H.; Demuzere, M.; Thiery, W.; Walle, J.V.; Lipzig, N.P.M. The Local Climate Impact of an African City During Clear-Sky Conditions-Implications of the Recent Urbanization in Kampala (Uganda). Int. J. Climatol. 2020, 40, 4586–4608. [Google Scholar] [CrossRef]
- Chen, C.; Bagan, H.; Xie, X.; La, Y.; Yamagata, Y. Combination of Sentinel-2 and PALSAR-2 for Local Climate Zone Classification: A Case Study of Nanchang, China. Remote Sens. 2021, 13, 1902. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The Role of Blue Green Infrastructure in the Urban Thermal Environment across Seasons and Local Climate Zones in East Africa. Sustain. Cities Soc. 2022, 80, 103798. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Middel, A.; Zhang, Y.; Gu, Z.; Wu, Y.; He, S. Exploring Diurnal Thermal Variations in Urban Local Climate Zones with ECOSTRESS Land Surface Temperature Data. Remote Sens. Environ. 2021, 263, 112544. [Google Scholar] [CrossRef]
- Ma, L.; Yang, Z.; Zhou, L.; Lu, H.; Yin, G. Local Climate Zones Mapping Using Object-Based Image Analysis and Validation of Its Effectiveness through Urban Surface Temperature Analysis in China. Build. Environ. 2021, 206, 108348. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.; Pan, X.; Zhu, Q.; Zhan, W.; Wang, Y.; Ma, W.; Su, W. Analysis of the Spatial and Temporal Variations of Land Surface Temperature Based on Local Climate Zones: A Case Study in Nanjing, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4213–4223. [Google Scholar] [CrossRef]
- Xia, H.; Chen, Y.; Song, C.; Li, J.; Quan, J.; Zhou, G. Analysis of Surface Urban Heat Islands Based on Local Climate Zones via Spatiotemporally Enhanced Land Surface Temperature. Remote Sens. Environ. 2022, 273, 112972. [Google Scholar] [CrossRef]
- Dimitrov, S.; Popov, A.; Iliev, M. An Application of the LCZ Approach in Surface Urban Heat Island Mapping in Sofia, Bulgaria. Atmosphere 2021, 12, 1370. [Google Scholar] [CrossRef]
- Han, B.; Luo, Z.; Liu, Y.; Zhang, T.; Yang, L. Using Local Climate Zones to Investigate Spatio-Temporal Evolution of Thermal Environment at the Urban Regional Level: A Case Study in Xi′an, China. Sustain. Cities Soc. 2022, 76, 103495. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Wang, M.; He, G.; Zhang, Z.; Wang, G.; Wang, Z.; Yin, R.; Cui, S.; Wu, Z.; Cao, X. A Radiance-Based Split-Window Algorithm for Land Surface Temperature Retrieval: Theory and Application to MODIS Data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 204–217. [Google Scholar] [CrossRef]
- Azmi, R.; Tekouabou Koumetio, C.S.; Diop, E.B.; Chenal, J. Exploring the Relationship between Urban Form and Land Surface Temperature (LST) in a Semi-Arid Region Case Study of Ben Guerir City—Morocco. Environ. Chall. 2021, 5, 100229. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Han, J.; Liu, J.; Liu, L.; Ye, Y. Spatiotemporal Changes in the Urban Heat Island Intensity of Distinct Local Climate Zones: Case Study of Zhongshan District, Dalian, China. Complexity 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Dong, P.; Jiang, S.; Zhan, W.; Wang, C.; Miao, S.; Du, H.; Li, J.; Wang, S.; Jiang, L. Diurnally Continuous Dynamics of Surface Urban Heat Island Intensities of Local Climate Zones with Spatiotemporally Enhanced Satellite-Derived Land Surface Temperatures. Build. Environ. 2022, 218, 109105. [Google Scholar] [CrossRef]
- Fricke, C.; Pongrácz, R.; Gál, T.; Savić, S.; Unger, J. Using Local Climate Zones to Compare Remotely Sensed Surface Temperatures in Temperate Cities and Hot Desert Cities. Morav. Geogr. Rep. 2020, 28, 48–60. [Google Scholar] [CrossRef]
- Dutta, K.; Basu, D.; Agrawal, S. Evaluation of Seasonal Variability in Magnitude of Urban Heat Islands Using Local Climate Zone Classification and Surface Albedo. Int. J. Environ. Sci. Technol. 2021, 19, 8677–8698. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Z.; Hu, M.; Chen, S.; Xia, B. A Practical Approach of Urban Green Infrastructure Planning to Mitigate Urban Overheating: A Case Study of Guangzhou. J. Clean. Prod. 2021, 287, 124995. [Google Scholar] [CrossRef]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI Analysis Using Local Climate Zones—A Comparison of 50 Cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Quan, J. Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification. Int. J. Environ. Res. Public Health 2019, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Mandelmilch, M.; Ferenz, M.; Mandelmilch, N.; Potchter, O. Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv. Atmosphere 2020, 11, 963. [Google Scholar] [CrossRef]
- Zhu, R.; Dong, X.; Wong, M.S. Estimation of the Urban Heat Island Effect in a Reformed Urban District: A Scenario-Based Study in Hong Kong. Sustainability 2022, 14, 4409. [Google Scholar] [CrossRef]
- Cai, Z.; Tang, Y.; Zhan, Q. A Cooled City? Comparing Human Activity Changes on the Impact of Urban Thermal Environment before and after City-Wide Lockdown. Build. Environ. 2021, 195, 107729. [Google Scholar] [CrossRef] [PubMed]
- Rouse, W.; Haas, R.H. Monitoring vegetation systems in the Great Plains with Erts. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Niza, S.; Soares, A. An Urban Energy Balance-Guided Machine Learning Approach for Synthetic Nocturnal Surface Urban Heat Island Prediction: A Heatwave Event in Naples. Sci. Total Environ. 2022, 805, 150130. [Google Scholar] [CrossRef]
- Wan, J.; Yong, B.; Zhou, X. Spatial and Temporal Analysis of the Increasing Effects of Large-Scale Infrastructure Construction on the Surface Urban Heat Island. Ecotoxicol. Environ. Saf. 2022, 237, 113521. [Google Scholar] [CrossRef]
- Martins, G.A.; Domingues, O. Estatística Geral E Aplicada, 6th ed.; Publisher: Atlas, Brazil, 2017; pp. 1–360. [Google Scholar]
- Nurwanda, A.; Honjo, T. Analysis of Land Use Change and Expansion of Surface Urban Heat Island in Bogor City by Remote Sensing. ISPRS Int. J. Geo-Inf. 2018, 7, 165. [Google Scholar] [CrossRef]
- Budhiraja, B.; Gawuc, L.; Agrawal, G. Seasonality of Surface Urban Heat Island in Delhi City Region Measured by Local Climate Zones and Conventional Indicators. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5223–5232. [Google Scholar] [CrossRef]
- Li, N.; Yang, J.; Qiao, Z.; Wang, Y.; Miao, S. Urban Thermal Characteristics of Local Climate Zones and Their Mitigation Measures across Cities in Different Climate Zones of China. Remote Sens. 2021, 13, 1468. [Google Scholar] [CrossRef]
- Quan, J. Enhanced Geographic Information System-Based Mapping of Local Climate Zones in Beijing, China. Sci. China Technol. Sci. 2019, 62, 2243–2260. [Google Scholar] [CrossRef]
- Feng, J.; Cai, X.; Chapman, L. Impact of Atmospheric Conditions and Levels of Urbanization on the Relationship between Nocturnal Surface and Urban Canopy Heat Islands. Q. J. R. Meteorol. Soc. 2019, 145, 3284–3299. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Inter-/Intra-Zonal Seasonal Variability of the Surface Urban Heat Island Based on Local Climate Zones in Three Central European Cities. Build. Environ. 2019, 156, 21–32. [Google Scholar] [CrossRef]
- Shi, Y.; Xiang, Y.; Zhang, Y. Urban Design Factors Influencing Surface Urban Heat Island in the High-Density City of Guangzhou Based on the Local Climate Zone. Sensors 2019, 19, 3459. [Google Scholar] [CrossRef]
- Dian, C.; Pongrácz, R.; Dezső, Z.; Bartholy, J. Annual and Monthly Analysis of Surface Urban Heat Island Intensity with Respect to the Local Climate Zones in Budapest. Urban Clim. 2020, 31, 100573. [Google Scholar] [CrossRef]
- Ochola, E.M.; Fakharizadehshirazi, E.; Adimo, A.O.; Mukundi, J.B.; Wesonga, J.M.; Sodoudi, S. Inter-Local Climate Zone Differentiation of Land Surface Temperatures for Management of Urban Heat in Nairobi City, Kenya. Urban Clim. 2020, 31, 100540. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, B.; Hu, Y. Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China. Sustainability 2020, 12, 2974. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Yang, J.; Wu, Z.; Zhu, H. Remote Sensing of Urban Thermal Environments within Local Climate Zones: A Case Study of Two High-Density Subtropical Chinese Cities. Urban Clim. 2020, 31, 100568. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.L.R.; Weng, Q.; Currit, N.; Weaver, R. Use of Local Climate Zones to Investigate Surface Urban Heat Islands in Texas. GIScience Remote Sens. 2020, 57, 1083–1101. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, J.; Ma, S. Dynamic Changes of Local Climate Zones in the Guangdong–Hong Kong–Macao Greater Bay Area and Their Spatial-Temporal Impacts on the Surface Urban Heat Island Effect between 2005 and 2015. Sustainability 2021, 13, 6374. [Google Scholar] [CrossRef]
- Badaro-Saliba, N.; Adjizian-Gerard, J.; Zaarour, R.; Najjar, G. LCZ Scheme for Assessing Urban Heat Island Intensity in a Complex Urban Area (Beirut, Lebanon). Urban Clim. 2021, 37, 100846. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Alzhrani, A.I.; Alanazi, H.H. Local Climate Zones and Thermal Characteristics in Riyadh City, Saudi Arabia. Remote Sens. 2021, 13, 4526. [Google Scholar] [CrossRef]
- Shi, L.; Ling, F.; Foody, G.M.; Yang, Z.; Liu, X.; Du, Y. Seasonal SUHI Analysis Using Local Climate Zone Classification: A Case Study of Wuhan, China. Int. J. Environ. Res. Public Health 2021, 18, 7232. [Google Scholar] [CrossRef] [PubMed]
- Eldesoky, A.H.M.; Gil, J.; Pont, M.B. The Suitability of the Urban Local Climate Zone Classification Scheme for Surface Temperature Studies in Distinct Macroclimate Regions. Urban Clim. 2021, 37, 100823. [Google Scholar] [CrossRef]
- Stewart, I.D.; Krayenhoff, E.S.; Voogt, J.A.; Lachapelle, J.A.; Allen, M.A.; Broadbent, A.M. Time Evolution of the Surface Urban Heat Island. Earths Future 2021, 9, e2021EF002178. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Zhang, Z.; Hu, T.; Xing, J.; He, Z.; Liu, X. Geographical Detection of Urban Thermal Environment Based on the Local Climate Zones: A Case Study in Wuhan, China. Remote Sens. 2022, 14, 1067. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Y.; Chen, S.; Ni, Z.; Xia, B. Spatiotemporal Evolution of Urban Development and Surface Urban Heat Island in Guangdong-Hong Kong-Macau Greater Bay Area of China from 2013 to 2019. Resour. Conserv. Recycl. 2022, 179, 106063. [Google Scholar] [CrossRef]
Title | Year | Journal | Influence | Author |
---|---|---|---|---|
Optimizing local climate zones to mitigate urban heat island effect in human settlements | 2020 | Journal of Cleaner Production | 49.5 | [4] |
Spatial variability and temporal heterogeneity of surface urban heat island patterns and the suitability of local climate zones for land surface temperature characterization | 2021 | Remote Sensing | 37 | [12] |
Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data | 2021 | Sustainable Cities and Society | 19 | [13] |
Evaluation of urban heat islands using local climate zones and the influence of sea–land breeze | 2020 | Sustainable Cities and Society | 17.5 | [14] |
Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone | 2019 | Urban Climate | 14.6 | [15] |
Understanding Land Surface Temperature Differences of Local Climate Zones Based on Airborne Remote Sensing Data | 2018 | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 11.5 | [16] |
Countries | Documents | Citations | Strength |
---|---|---|---|
China | 24 | 337 | 82 |
United States (US) | 5 | 123 | 31 |
United Kingdom | 4 | 71 | 45 |
Serbia | 3 | 82 | 17 |
Japan | 3 | 61 | 23 |
Switzerland | 3 | 40 | 8 |
Belgium | 2 | 100 | 18 |
Satellites | Sensors | Operators | Publications | Time Resolution | Spatial Resolution |
---|---|---|---|---|---|
Terra-Aqua | MODIS | NASA | 18 | 1–2 days | 250 m–1 km |
Terra | ASTER | NASA | 8 | 16 days | 15–90 m |
Landsat 8 | OLI/TIRS | NASA/USGS | 43 | 16 days | OLI: 15/30 m TIRS: 100 m |
Landsat 7 | ETM+ | NASA/USGS | 6 | 16 days | 15–30–60 m |
Landsat 5 | TM | NASA/USGS | 6 | 16 days | 30–120 m |
Sentinel 2 A-B | MSI | ESA | 7 | 5 days | 10 m |
FY-2F | -- | NSMC | 2 | -- | -- |
Others | -- | -- | 9 | -- | -- |
Index | Equations | Authors |
---|---|---|
Split-Window Algorithm (SWA) | Ts = C + (A1 + A2 (1−e/e) + A3 (Δe/e2)) T4 + T5/2 + (B1 + B2 (1−e/e) + B3(Δe/e2) T4−T5/2 | [36] |
Single-channel Algorithm (SCA) | Ts = y1e(ψ 1 Lsen + ψ 2) + ψ3 + δ | [33] |
Mono-Window Algorithm (MWA) | LST = B(LST)/(ln e(λ.B(LST)/p+1)) | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, R.; Nascimento, V.; Freitas, M.; Ometto, J. Local Climate Zones to Identify Surface Urban Heat Islands: A Systematic Review. Remote Sens. 2023, 15, 884. https://doi.org/10.3390/rs15040884
Fernandes R, Nascimento V, Freitas M, Ometto J. Local Climate Zones to Identify Surface Urban Heat Islands: A Systematic Review. Remote Sensing. 2023; 15(4):884. https://doi.org/10.3390/rs15040884
Chicago/Turabian StyleFernandes, Rodrigo, Victor Nascimento, Marcos Freitas, and Jean Ometto. 2023. "Local Climate Zones to Identify Surface Urban Heat Islands: A Systematic Review" Remote Sensing 15, no. 4: 884. https://doi.org/10.3390/rs15040884
APA StyleFernandes, R., Nascimento, V., Freitas, M., & Ometto, J. (2023). Local Climate Zones to Identify Surface Urban Heat Islands: A Systematic Review. Remote Sensing, 15(4), 884. https://doi.org/10.3390/rs15040884