Calibration of the ESA CCI-Combined Soil Moisture Products on the Qinghai-Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Field Measurement Data
2.2.2. Remote Sensing Data
2.3. Models
2.4. Accuracy Assessment
3. Results
3.1. Comparison of CCI-C SM Data with In-Situ Observations
3.2. Performance of Conventional Fitting Methods
3.3. Calibrated Results Using Machine Learning Method
3.4. Spatial Performance of the Calibrated SM Data in 2015 for Demonstration
4. Discussion
4.1. Applicability of CCI-C SM Product on the QTP
4.2. Temporal and Spatial Changes in SMC on the QTP
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickinson, R.E. Land surface processes and climate—Surface albedos and energy balance. Adv. Geophys. 1983, 25, 305–353. [Google Scholar]
- Li, R.; Zhao, L.; Wu, T.; Ding, Y.; Xiao, Y.; Hu, G.; Zou, D.; Li, W.; Yu, W.; Jiao, Y.; et al. The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai–Xizang Plateau, China. Environ. Earth Sci. 2014, 72, 2091–2099. [Google Scholar] [CrossRef]
- Li, H.; Shen, W.; Zou, C.; Jiang, J.; Fu, L.; She, G. Spatio-temporal variability of soil moisture and its effect on vegetation in a desertified aeolian riparian ecotone on the Tibetan Plateau, China. J. Hydrol. 2013, 479, 215–225. [Google Scholar]
- Zucco, G.; Brocca, L.; Moramarco, T.; Morbidelli, R. Influence of land use on soil moisture spatial–temporal variability and monitoring. J. Hydrol. 2014, 516, 193–199. [Google Scholar] [CrossRef]
- Stamenkovic, J.; Guerriero, L.; Ferrazzoli, P.; Notarnicola, C.; Greifeneder, F.; Thiran, J.P. Soil moisture estimation by SAR in Alpine fields using Gaussian process regressor trained by model simulations. IEEE. Geosci. Remote Sens. 2017, 55, 4899–4912. [Google Scholar] [CrossRef]
- Lee, J.H.; Cosh, M.; Starks, P.; Toth, Z. Self-Correction of Soil Moisture Ocean Salinity (SMOS) Soil Moisture Dry Bias. Can. J. Remote Sens. 2019, 45, 814–828. [Google Scholar]
- Ma, C.F.; Li, X.; Wei, L.; Wang, W.Z. Multi-scale validation of SMAP soil moisture products over cold and arid regions in northwestern China using distributed ground observation data. Remote Sens. 2017, 9, 327. [Google Scholar] [CrossRef]
- Qin, D.; Ding, Y.; Xiao, C.; Kang, S.; Ren, J.; Yang, J.; Zhang, S. Cryospheric Science: Research framework and disciplinary system. Natl. Sci. Rev. 2018, 5, 255–268. [Google Scholar]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Ma, Y.; Su, Z.; Koike, T.; Yao, T.; Ishikawa, H.; Ueno, K.; Menenti, M. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau––from GAME/Tibet to CAMP/Tibet. Phys. Chem. Earth. 2003, 28, 63–74. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Wu, X.; Han, H. An approach for improving soil water content for modeling net primary production on the Qinghai-Tibetan Plateau using Biome-BGC model. Catena 2020, 184, 104253. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Y.M. Soil temperature and moisture features of typical underlying surface in the Tibet Plateau. J. Glaciol. Geocryol. 2012, 34, 813–820. [Google Scholar]
- Liu, Q.; Du, J.; Shi, J.; Jiang, L. Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau. Sci. China Earth Sci. 2013, 56, 2173–2185. [Google Scholar]
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. [Google Scholar]
- Xi, J.J.; Tian, H.; Zhang, T. Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet plateau. Trans. CSAE 2014, 30, 194–202. [Google Scholar]
- Wan, H.; Gao, P.; Guo, P. Applicability evaluation of FY—3B remote sensing soil moisture products in the Tibetan plateau. J. Arid Land Res. Environ. 2017, 32, 132–137. [Google Scholar]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil moisture remote sensing: State-of-the-Science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Wagner, W.; Dorigo, W.; de Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Ann. 2012, 7, 315–321. [Google Scholar] [CrossRef]
- Dorigo, W.A.; de Jeu, R.A.M.; Chung, D.; Parinussa, R.M.; Liu, Y.; Wagner, W.; Fernandez-Prieto, D. Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett. 2012, 39, L18405. [Google Scholar]
- Albergel, C.; de Rosnay, P.; Balsamo, G.; Isaksen, L.; Muñoz-Sabater, J. Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeorol. 2012, 13, 1442–1460. [Google Scholar]
- McNally, A.; Shukla, S.; Arsenault, K.; Wang, S.; Peters-Lidard, C.; Verdin, J. Evaluating ESA CCI soil moisture in East Africa. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 96–109. [Google Scholar] [PubMed]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.Q.; Wang, J. Evaluation of satellite and reanalysis soil moisture products over southwest china using ground-based measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef]
- Pratola, C.; Barrett, B.; Gruber, A.; Dwyer, E. Quality assessment of the CCI ECV soil moisture product using ENVISAT ASAR wide swath data over Spain, Ireland and Finland. Remote Sens. 2015, 7, 15388–15423. [Google Scholar]
- Wang, S.; Mo, X.; Liu, S.; Lin, Z.; Hu, S. Validation and trend analysis of ECV soil moisture data on cropland in North China Plain during 1981–2010. Int. J. Appl. Earth Obs. 2016, 48, 110–121. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Zhao, L.; Wu, X.; Yue, G.-Y.; Zou, D.-F.; Nan, Z.-T.; Liu, G.-Y.; Pang, Q.-Q.; Fang, H.-B.; et al. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. J. MT Sci. Engl. 2016, 13, 1035–1046. [Google Scholar]
- Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res. Atmos. 2009, 114, D04113. [Google Scholar]
- Fang, L.; Hain, C.R.; Zhan, X.; Anderson, M.C. An inter-comparison of soil moisture data products from satellite remote sensing and a land surface model. Int. J. Appl. Earth Obs. 2016, 48, 37–50. [Google Scholar]
- Rahman, K.U.; Shang, S. A Regional Blended Precipitation Dataset over Pakistan Based on Regional Selection of Blending Satellite Precipitation Datasets and the Dynamic Weighted Average Least Squares Algorithm. Remote Sens. 2020, 12, 4009. [Google Scholar] [CrossRef]
- González-Zamora, Á.; Sánchez, N.; Pablos, M.; Martínez-Fernández, J. CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain. Remote Sens. Environ. 2018, 225, 469–482. [Google Scholar]
- Zhang, Z.J.; Sun, G.Q. Model investigation of the effect of vegetation on passive microwave soil moisture retrieval. Microwave Remote Sensing of the Atmosphere and Environment III. In Proceedings of the Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Hangzhou, China, April 2003; Volume 4894, pp. 140–150. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Holmes, T.R.H.; de Jeu, R.A.M. Soil moisture retrievals from the WindSat spaceborne polarimetric microwave radiometer. IEEE. Geosci. Remote Sens. 2012, 50, 2683–2694. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, L.; Zhang, L.; Chen, K.S.; Wigneron, J.P.; Chanzy, A.; Jackson, T.J. Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE. Geosci. Remote Sens. 2006, 44, 3145–3153. [Google Scholar] [CrossRef]
- van der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Gruber, A.; Su, C.-H.; Crow, W.T.; Zwieback, S.; Dorigo, W.A.; Wagner, W. Estimating error cross-correlations in soil moisture data sets using extended collocation analysis. J. Geophys. Res. Atmos. 2016, 121, 1208–1219. [Google Scholar] [CrossRef]
- Barichivich, J.; Briffa, K.R.; Myneni, R.; Schrier, G.V.d.; Dorigo, W.; Tucker, C.J.; Osborn, T.J.; Melvin, T.M. Temperature and Snow-Mediated Moisture Controls of Summer Photosynthetic Activity in Northern Terrestrial Ecosystems between 1982 and 2011. Remote Sens. 2014, 6, 1390–1431. [Google Scholar] [CrossRef]
- Cosh, M.H.; Ochsner, T.; McKee, L.; Dong, J.; Basara, J.B.; Evett, S.R.; Hatch, C.E.; Small, E.E.; Steele-Dunne, S.C.; Zreda, M.; et al. The soil moisture active passive Marena, Oklahoma, in situ sensor testbed (SMAP-MOISST): Testbed design and evaluation of in situ sensors. Vadose Zone J. 2016, 15, vzj2015.09.0122. [Google Scholar]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar]
- Loew, A.; Stacke, T.; Dorigo, W.; de Jeu, R.; Hagemann, S. Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies. Hydrol. Earth Syst. Sci. 2013, 17, 3523–3542. [Google Scholar]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Albergel, C.; de Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar]
- Dorigo, W.A.; Scipal, K.; Parinussa, R.M.; Liu, Y.Y.; Wagner, W.; de Jeu, R.A.M.; Naeimi, V. Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci. 2010, 14, 2605–2616. [Google Scholar]
- Taylor, C.M.; de Jeu, R.A.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Dorigo, W.A.; Crow, W.; Wagner, W. Triple collocation-based merging of satellite soil moisture retrievals. IEEE. Geosci. Remote Sens. 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Wigneron, J.P.; Kerr, Y.; de Jeu, R.; Rodriguez-Fernandez, N.; Van Der Schalie, R.; Bitar, A.A.; Mialon, A.; Richaume, P.; Dolman, A.; et al. Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations. Remote Sens. Environ. 2016, 180, 453–464. [Google Scholar]
- Elnaggar, A.A.; Noller, J.S. Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas. Remote Sens. 2010, 2, 151–165. [Google Scholar] [CrossRef]
- Wu, X.; Fang, H.; Zhao, Y.; Smoak, J.; Li, W.; Shi, W.; Sheng, Y.; Zhao, L.; Ding, Y. A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau. J. Geophys. Res. Biogeosci. 2017, 122, 1705–1717. [Google Scholar]
- Findell, K.L.; Eltahir, E.A.B. An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res. 1997, 33, 725–735. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Zhao, L.; Liang, Y.; Cheng, G. Qinghai-Tibet Plateau wetting reduces permafrost thermal responses to climate warming. Earth Planet. Sci. Lett. 2021, 562, 116858. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [Google Scholar] [CrossRef]
- Shi, L.; Du, J.; Zhou, K.S.; Zhuo, G. Temporal and spatial evolution of soil moisture over the Tibetan Plateau from 1980 to 2012. J. Glaciol. Geocryol. 2016, 38, 1241–1248. [Google Scholar]
- Méndez-Barroso, L.A.; Vivoni, E.R.; Watts, C.J.; Rodríguez, J.C. Seasonal and interannual relations between precipitation, surface soil moisture and vegetation dynamics in the North American monsoon region. J. Hydrol. 2009, 377, 59–70. [Google Scholar] [CrossRef]
- Yang, M.X.; Yao, T.D.; He, Y.Q. The role of soil moisture-energy distribution and melting-freezing processes on seasonal shift in Tibetan Plateau. J. MT Sci. Engl. 2002, 20, 536–558. [Google Scholar]
- Qi, W.; Zhang, B.; Pang, Y.; Zhao, F.; Zhang, S. TRMM-Data-Based Spatial and Seasonal Patterns of Precipitation in the Qinghai-Tibet Plateau. Sci. Geogr. Sin. 2013, 33, 999–1005. [Google Scholar]
- Wu, X.; Zhao, L.; Wu, T.; Chen, J.; Pang, Q.; Du, E.; Fang, H.; Wang, Z.; Zhao, Y.; Ding, Y. Observation of CO2 degassing in Tianshuihai Lake Basin of the Qinghai-Tibetan Plateau. Environ. Earth Sci. 2013, 68, 865–870. [Google Scholar] [CrossRef]
Network | Site | Latitude (N)/Longitude (E) | Elevation (m) | Topography | Land Cover |
---|---|---|---|---|---|
Naqu (NQ) | Naqu | 31°22′/91°53′ | 4509 | Flat ground | Grassland |
West | 31°20′/91°49′ | 4506 | Flat ground | Grassland | |
South | 31°19′/91°52′ | 4510 | Mountain slope | Wet meadow | |
North | 31°22′/91°52′ | 4507 | Riverbank | Grassland | |
East | 31°22′/91°55′ | 4527 | Flat hill top | Grassland | |
Maqu (MQ) | CST_01 | 33°53′/102°08′ | 3431 | River valley | Grassland |
CST_02 | 33°40′/102°08′ | 3449 | River valley | Grassland | |
CST_03 | 33°54′/101°58′ | 3507 | Hill valley | Grassland | |
CST_04 | 33°46′/101°43′ | 3504 | Hill valley | Grassland | |
CST_05 | 33°40′/101°53′ | 3542 | Hill valley | Grassland | |
NST_01 | 33°53′/102°08′ | 3431 | River valley | Grassland | |
NST_02 | 33°53′/102°08′ | 3434 | River valley | Grassland | |
NST_03 | 33°46′/102°08′ | 3513 | Hill slope | Grassland | |
NST_04 | 33°37′/102°03′ | 3448 | River valley | Wet meadow | |
NST_05 | 33°38′/102°03′ | 3476 | River valley | Grassland | |
NST_06 | 34°00′/102°16′ | 3428 | River valley | Grassland | |
NST_07 | 33°59′/102°21′ | 3430 | River valley | Grassland | |
NST_08 | 33°58′/102°36′ | 3473 | Mountain valley | Grassland | |
NST_09 | 33°54′/102°33′ | 3434 | River valley | Grassland | |
NST_10 | 33°51′/102°34′ | 3512 | Hill slope | Grassland | |
NST_11 | 33°41′/102°28′ | 3442 | River valley | Wet meadow | |
NST_12 | 33°37′/102°28′ | 3441 | River valley | Grassland | |
NST_13 | 34°01′/101°56′ | 3519 | Mountain valley | Grassland | |
NST_14 | 33°55′/102°07′ | 3432 | River valley | Grassland | |
NST_15 | 33°51′/101°53′ | 3752 | Hill slope | Grassland | |
Shiquanhe (SQH) | SQ01 | 32°29′/80°04′ | 4306 | Flat ground | Desert |
SQ02 | 32°30′/80°01′ | 4304 | Gentle slope | Desert | |
SQ03 | 32°30′/79°58′ | 4278 | Gentle slope | Desert | |
SQ04 | 32°30′/79°57′ | 4269 | Flat ground | Sparse grass | |
SQ05 | 32°30′/79°55′ | 4261 | Flat ground | Sparse grass | |
SQ06 | 32°30′/79°52′ | 4257 | Flat ground | Sparse grass | |
SQ07 | 32°31′/79°50′ | 4280 | Flat ground | Desert | |
SQ08 | 32°33′/79°50′ | 4306 | Flat ground | Desert | |
SQ09 | 32°27′/80°03′ | 4275 | Flat ground | Desert | |
SQ10 | 32°25′/80°00′ | 4275 | Flat ground | Grassland | |
SQ11 | 32°27′/79°58′ | 4274 | Flat ground | Grassland | |
SQ12 | 32°27′/79°56′ | 4264 | Edge of riverbed | Desert | |
SQ13 | 32°26′/79°54′ | 4295 | Valley bottom | Desert | |
SQ14 | 32°27′/80°10′ | 4368 | Mountain slope | Desert | |
SQ15 | 32°26′/80°11′ | 4387 | Flat ground | Shrubs | |
SQ16 | 32°26′/80°04′ | 4288 | Flat ground | Desert |
Metric | Equation |
---|---|
NSE | |
KGE | |
ubRMSE | |
R |
Sites | Method | NSE | KGE | ubRMSE | R |
---|---|---|---|---|---|
MQ | CCI | −2.349 | 0.412 | 0.047 | 0.742 |
Linear fit | 0.551 | 0.636 | 0.049 | 0.742 | |
Logarithmic fit | 0.566 | 0.650 | 0.048 | 0.752 | |
Polynomial fit | 0.569 | 0.653 | 0.048 | 0.754 | |
Logic fit | 0.539 | 0.631 | 0.049 | 0.734 | |
NQ | CCI | 0.704 | 0.861 | 0.028 | 0.870 |
Linear fit | 0.758 | 0.817 | 0.027 | 0.870 | |
Logarithmic fit | 0.729 | 0.793 | 0.029 | 0.854 | |
Polynomial fit | 0.764 | 0.822 | 0.027 | 0.874 | |
Logic fit | 0.764 | 0.821 | 0.027 | 0.874 | |
SQH | CCI | −9.259 | −0.187 | 0.091 | 0.774 |
Linear fit | 0.599 | 0.680 | 0.024 | 0.774 | |
Logarithmic fit | 0.577 | 0.660 | 0.025 | 0.760 | |
Polynomial fit | 0.601 | 0.682 | 0.024 | 0.775 | |
Logic fit | 0.593 | 0.684 | 0.024 | 0.770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Li, Y.; Liu, G. Calibration of the ESA CCI-Combined Soil Moisture Products on the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 918. https://doi.org/10.3390/rs15040918
Yu W, Li Y, Liu G. Calibration of the ESA CCI-Combined Soil Moisture Products on the Qinghai-Tibet Plateau. Remote Sensing. 2023; 15(4):918. https://doi.org/10.3390/rs15040918
Chicago/Turabian StyleYu, Wenjun, Yanzhong Li, and Guimin Liu. 2023. "Calibration of the ESA CCI-Combined Soil Moisture Products on the Qinghai-Tibet Plateau" Remote Sensing 15, no. 4: 918. https://doi.org/10.3390/rs15040918
APA StyleYu, W., Li, Y., & Liu, G. (2023). Calibration of the ESA CCI-Combined Soil Moisture Products on the Qinghai-Tibet Plateau. Remote Sensing, 15(4), 918. https://doi.org/10.3390/rs15040918